These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
448 related articles for article (PubMed ID: 10027791)
1. Sequence context modulation of translesion synthesis at a single N-2-acetylaminofluorene adduct located within a mutation hot spot. Burnouf DY; Miturski R; Fuchs RP Chem Res Toxicol; 1999 Feb; 12(2):144-50. PubMed ID: 10027791 [TBL] [Abstract][Full Text] [Related]
2. N-2-aminofluorene and N-2 acetylaminofluorene adducts: the local sequence context of an adduct and its chemical structure determine its replication properties. Belguise-Valladier P; Fuchs RP J Mol Biol; 1995 Jun; 249(5):903-13. PubMed ID: 7791216 [TBL] [Abstract][Full Text] [Related]
3. Mechanism for N-acetyl-2-aminofluorene-induced frameshift mutagenesis by Escherichia coli DNA polymerase I (Klenow fragment). Gill JP; Romano LJ Biochemistry; 2005 Nov; 44(46):15387-95. PubMed ID: 16285743 [TBL] [Abstract][Full Text] [Related]
4. Effect of single DNA lesions on in vitro replication with DNA polymerase III holoenzyme. Comparison with other polymerases. Belguise-Valladier P; Maki H; Sekiguchi M; Fuchs RP J Mol Biol; 1994 Feb; 236(1):151-64. PubMed ID: 8107100 [TBL] [Abstract][Full Text] [Related]
5. Mutagenic properties of 3-(deoxyguanosin-N2-yl)-2-acetylaminofluorene, a persistent acetylaminofluorene-derived DNA adduct in mammalian cells. Yasui M; Dong H; Bonala RR; Suzuki N; Ohmori H; Hanaoka F; Johnson F; Grollman AP; Shibutani S Biochemistry; 2004 Nov; 43(47):15005-13. PubMed ID: 15554708 [TBL] [Abstract][Full Text] [Related]
6. Translesion synthesis in Escherichia coli: lessons from the NarI mutation hot spot. Fuchs RP; Fujii S DNA Repair (Amst); 2007 Jul; 6(7):1032-41. PubMed ID: 17403618 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of frameshift (deletion) generated by acetylaminofluorene-derived DNA adducts in vitro. Shibutani S; Suzuki N; Grollman AP Biochemistry; 2004 Dec; 43(50):15929-35. PubMed ID: 15595849 [TBL] [Abstract][Full Text] [Related]
8. Molecular mechanisms of mutagenesis by aromatic amines and amides. Shibutani S; Grollman AP Mutat Res; 1997 May; 376(1-2):71-8. PubMed ID: 9202740 [TBL] [Abstract][Full Text] [Related]
9. Mechanistic insights into replication across from bulky DNA adducts: a mutant polymerase I allows an N-acetyl-2-aminofluorene adduct to be accommodated during DNA synthesis. Lone S; Romano LJ Biochemistry; 2003 Apr; 42(13):3826-34. PubMed ID: 12667073 [TBL] [Abstract][Full Text] [Related]
10. DNA polymerases II and V mediate respectively mutagenic (-2 frameshift) and error-free bypass of a single N-2-acetylaminofluorene adduct. Fuchs RP; Koffel-Schwartz N; Pelet S; Janel-Bintz R; Napolitano R; Becherel OJ; Broschard TH; Burnouf DY; Wagner J Biochem Soc Trans; 2001 May; 29(Pt 2):191-5. PubMed ID: 11356152 [TBL] [Abstract][Full Text] [Related]
11. Binding and incision activities of UvrABC excinuclease on slipped DNA intermediates that generate frameshift mutations. Delagoutte E; Bertrand-Burggraf E; Lambert IB; Fuchs RP J Mol Biol; 1996 Apr; 257(5):970-6. PubMed ID: 8632479 [TBL] [Abstract][Full Text] [Related]
12. Pol III proofreading activity prevents lesion bypass as evidenced by its molecular signature within E.coli cells. Pages V; Janel-Bintz R; Fuchs RP J Mol Biol; 2005 Sep; 352(3):501-9. PubMed ID: 16111701 [TBL] [Abstract][Full Text] [Related]
13. The N2-ethylguanine and the O6-ethyl- and O6-methylguanine lesions in DNA: contrasting responses from the "bypass" DNA polymerase eta and the replicative DNA polymerase alpha. Perrino FW; Blans P; Harvey S; Gelhaus SL; McGrath C; Akman SA; Jenkins GS; LaCourse WR; Fishbein JC Chem Res Toxicol; 2003 Dec; 16(12):1616-23. PubMed ID: 14680376 [TBL] [Abstract][Full Text] [Related]
14. Sequence-dependent modulation of frameshift mutagenesis at NarI-derived mutation hot spots. Broschard TH; Koffel-Schwartz N; Fuchs RP J Mol Biol; 1999 Apr; 288(1):191-9. PubMed ID: 10329136 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and miscoding specificity of oligodeoxynucleotide containing 8-phenyl-2'-deoxyguanosine. Kohda K; Tsunomoto H; Kasamatsu T; Sawamura F; Terashima I; Shibutani S Chem Res Toxicol; 1997 Dec; 10(12):1351-8. PubMed ID: 9437525 [TBL] [Abstract][Full Text] [Related]
16. Cellular strategies for accommodating replication-hindering adducts in DNA: control by the SOS response in Escherichia coli. Koffel-Schwartz N; Coin F; Veaute X; Fuchs RP Proc Natl Acad Sci U S A; 1996 Jul; 93(15):7805-10. PubMed ID: 8755557 [TBL] [Abstract][Full Text] [Related]
17. Loss of DNA minor groove interactions by exonuclease-deficient Klenow polymerase inhibits O6-methylguanine and abasic site translesion synthesis. Gestl EE; Eckert KA Biochemistry; 2005 May; 44(18):7059-68. PubMed ID: 15865450 [TBL] [Abstract][Full Text] [Related]
18. Solution structure of the aminofluorene-intercalated conformer of the syn [AF]-C8-dG adduct opposite a--2 deletion site in the NarI hot spot sequence context. Mao B; Gorin A; Gu Z; Hingerty BE; Broyde S; Patel DJ Biochemistry; 1997 Nov; 36(47):14479-90. PubMed ID: 9398167 [TBL] [Abstract][Full Text] [Related]
19. Replication block by an enediyne drug-DNA deoxyribose adduct. Kappen LS; Goldberg IH Biochemistry; 1999 Jan; 38(1):235-42. PubMed ID: 9890903 [TBL] [Abstract][Full Text] [Related]
20. Miscoding properties of 2'-deoxyinosine, a nitric oxide-derived DNA Adduct, during translesion synthesis catalyzed by human DNA polymerases. Yasui M; Suenaga E; Koyama N; Masutani C; Hanaoka F; Gruz P; Shibutani S; Nohmi T; Hayashi M; Honma M J Mol Biol; 2008 Apr; 377(4):1015-23. PubMed ID: 18304575 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]