BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 10027828)

  • 1. In vivo modulation of alternative pathways of P-450-catalyzed cyclophosphamide metabolism: impact on pharmacokinetics and antitumor activity.
    Yu LJ; Drewes P; Gustafsson K; Brain EG; Hecht JE; Waxman DJ
    J Pharmacol Exp Ther; 1999 Mar; 288(3):928-37. PubMed ID: 10027828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of cytochrome P450 in oxazaphosphorine metabolism. Deactivation via N-dechloroethylation and activation via 4-hydroxylation catalyzed by distinct subsets of rat liver cytochromes P450.
    Yu L; Waxman DJ
    Drug Metab Dispos; 1996 Nov; 24(11):1254-62. PubMed ID: 8937861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of liver P450 reductase suppression on cyclophosphamide activation, pharmacokinetics and antitumoral activity in a cytochrome P450-based cancer gene therapy model.
    Huang Z; Raychowdhury MK; Waxman DJ
    Cancer Gene Ther; 2000 Jul; 7(7):1034-42. PubMed ID: 10917206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of cyclophosphamide-based cytochrome P450 gene therapy using liver P450 inhibitors.
    Huang Z; Waxman DJ
    Cancer Gene Ther; 2001 Jun; 8(6):450-8. PubMed ID: 11498765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of P450-dependent ifosfamide pharmacokinetics: a better understanding of drug activation in vivo.
    Brain EG; Yu LJ; Gustafsson K; Drewes P; Waxman DJ
    Br J Cancer; 1998 Jun; 77(11):1768-76. PubMed ID: 9667645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism of the antimammary cancer antiestrogenic agent tamoxifen. I. Cytochrome P-450-catalyzed N-demethylation and 4-hydroxylation.
    Mani C; Gelboin HV; Park SS; Pearce R; Parkinson A; Kupfer D
    Drug Metab Dispos; 1993; 21(4):645-56. PubMed ID: 8104124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retroviral transfer of human cytochrome P450 genes for oxazaphosphorine-based cancer gene therapy.
    Jounaidi Y; Hecht JE; Waxman DJ
    Cancer Res; 1998 Oct; 58(19):4391-401. PubMed ID: 9766669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of thiotepa antitumor activity in vivo by alteration of liver cytochrome P450-catalyzed drug metabolism.
    Chang TK; Chen G; Waxman DJ
    J Pharmacol Exp Ther; 1995 Jul; 274(1):270-5. PubMed ID: 7616408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced cyclophosphamide and ifosfamide activation in primary human hepatocyte cultures: response to cytochrome P-450 inducers and autoinduction by oxazaphosphorines.
    Chang TK; Yu L; Maurel P; Waxman DJ
    Cancer Res; 1997 May; 57(10):1946-54. PubMed ID: 9157990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of hepatic cytochrome p450s in the pharmacokinetics and toxicity of cyclophosphamide: studies with the hepatic cytochrome p450 reductase null mouse.
    Pass GJ; Carrie D; Boylan M; Lorimore S; Wright E; Houston B; Henderson CJ; Wolf CR
    Cancer Res; 2005 May; 65(10):4211-7. PubMed ID: 15899812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative metabolism of cyclophosphamide: identification of the hepatic monooxygenase catalysts of drug activation.
    Clarke L; Waxman DJ
    Cancer Res; 1989 May; 49(9):2344-50. PubMed ID: 2706622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intratumoral activation and enhanced chemotherapeutic effect of oxazaphosphorines following cytochrome P-450 gene transfer: development of a combined chemotherapy/cancer gene therapy strategy.
    Chen L; Waxman DJ
    Cancer Res; 1995 Feb; 55(3):581-9. PubMed ID: 7834628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo antitumor activity and host toxicity of methoxymorpholinyl doxorubicin: role of cytochrome P450 3A.
    Quintieri L; Rosato A; Napoli E; Sola F; Geroni C; Floreani M; Zanovello P
    Cancer Res; 2000 Jun; 60(12):3232-8. PubMed ID: 10866316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potentiation of cytochrome P450/cyclophosphamide-based cancer gene therapy by coexpression of the P450 reductase gene.
    Chen L; Yu LJ; Waxman DJ
    Cancer Res; 1997 Nov; 57(21):4830-7. PubMed ID: 9354446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustained P450 expression and prodrug activation in bolus cyclophosphamide-treated cultured tumor cells. Impact of prodrug schedule on P450 gene-directed enzyme prodrug therapy.
    Schwartz PS; Chen CS; Waxman DJ
    Cancer Gene Ther; 2003 Aug; 10(8):571-82. PubMed ID: 12872138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitization of human breast cancer cells to cyclophosphamide and ifosfamide by transfer of a liver cytochrome P450 gene.
    Chen L; Waxman DJ; Chen D; Kufe DW
    Cancer Res; 1996 Mar; 56(6):1331-40. PubMed ID: 8640822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced bystander cytotoxicity of P450 gene-directed enzyme prodrug therapy by expression of the antiapoptotic factor p35.
    Schwartz PS; Chen CS; Waxman DJ
    Cancer Res; 2002 Dec; 62(23):6928-37. PubMed ID: 12460909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N,N',N''-triethylenethiophosphoramide (thio-TEPA) oxygenation by constitutive hepatic P450 enzymes and modulation of drug metabolism and clearance in vivo by P450-inducing agents.
    Ng SF; Waxman DJ
    Cancer Res; 1991 May; 51(9):2340-5. PubMed ID: 1707751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enantioselective metabolism and cytotoxicity of R-ifosfamide and S-ifosfamide by tumor cell-expressed cytochromes P450.
    Chen CS; Jounaidi Y; Waxman DJ
    Drug Metab Dispos; 2005 Sep; 33(9):1261-7. PubMed ID: 15919850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequent, moderate-dose cyclophosphamide administration improves the efficacy of cytochrome P-450/cytochrome P-450 reductase-based cancer gene therapy.
    Jounaidi Y; Waxman DJ
    Cancer Res; 2001 Jun; 61(11):4437-44. PubMed ID: 11389073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.