These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 10027894)
1. Characterization of antithrombotic activity of lumbrokinase-immobilized polyurethane valves in the total artificial heart. Park Y; Ryu E; Kim H; Jeong J; Kim J; Shim J; Jeon S; Jo Y; Kim W; Min B Artif Organs; 1999 Feb; 23(2):210-4. PubMed ID: 10027894 [TBL] [Abstract][Full Text] [Related]
2. Antithrombotic activity of a lumbrokinase immobilized polyurethane surface. Ryu GH; Park S; Han DK; Kim YH; Min B ASAIO J; 1993; 39(3):M314-8. PubMed ID: 8268550 [TBL] [Abstract][Full Text] [Related]
3. Antithrombogenicity of lumbrokinase-immobilized polyurethane. Ryu GH; Park S; Kim M; Han DK; Kim YH; Min B J Biomed Mater Res; 1994 Sep; 28(9):1069-77. PubMed ID: 7814434 [TBL] [Abstract][Full Text] [Related]
4. Surface characteristics and properties of lumbrokinase-immobilized polyurethane. Ryu GH; Han DK; Park S; Kim M; Kim YH; Min B J Biomed Mater Res; 1995 Mar; 29(3):403-9. PubMed ID: 7615590 [TBL] [Abstract][Full Text] [Related]
6. In vitro and in vivo evaluation of a jellyfish valve for practical use. Imachi K; Mabuchi K; Chinzei T; Abe Y; Imanishi K; Yonezawa T; Maeda K; Suzukawa M; Kouno A; Ono T ASAIO Trans; 1989; 35(3):298-301. PubMed ID: 2597468 [TBL] [Abstract][Full Text] [Related]
7. In vitro comparison of dabigatran, unfractionated heparin, and low-molecular-weight heparin in preventing thrombus formation on mechanical heart valves. Maegdefessel L; Linde T; Krapiec F; Hamilton K; Steinseifer U; van Ryn J; Raaz U; Buerke M; Werdan K; Schlitt A Thromb Res; 2010 Sep; 126(3):e196-200. PubMed ID: 20659761 [TBL] [Abstract][Full Text] [Related]
13. Comparison of fondaparinux, low molecular-weight heparin and unfractionated heparin in preventing thrombus formation on mechanical heart valves: results of an in-vitro study. Schlitt A; Hamilton K; Maegdefessel L; Dahm M; Theis C; Eichler M; Brockmann O; Steinseifer U; Hauroeder B; Hitzler WE; Rupprecht HJ J Heart Valve Dis; 2006 Nov; 15(6):809-14. PubMed ID: 17152789 [TBL] [Abstract][Full Text] [Related]
14. In vivo biocompatibility of sulfonated PEO-grafted polyurethanes for polymer heart valve and vascular graft. Han DK; Park K; Park KD; Ahn KD; Kim YH Artif Organs; 2006 Dec; 30(12):955-9. PubMed ID: 17181836 [TBL] [Abstract][Full Text] [Related]
15. In-vitro calcification study of polyurethane heart valves. Boloori Zadeh P; Corbett SC; Nayeb-Hashemi H Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():335-40. PubMed ID: 24411385 [TBL] [Abstract][Full Text] [Related]
16. The return of elastomer valves. Kolff WJ; Yu LS Ann Thorac Surg; 1989 Sep; 48(3 Suppl):S98-9. PubMed ID: 2774762 [TBL] [Abstract][Full Text] [Related]
17. Polyurethane heart valves: past, present and future. Kütting M; Roggenkamp J; Urban U; Schmitz-Rode T; Steinseifer U Expert Rev Med Devices; 2011 Mar; 8(2):227-33. PubMed ID: 21381912 [TBL] [Abstract][Full Text] [Related]
18. Effectiveness of dabigatran etexilate for thromboprophylaxis of mechanical heart valves. McKellar SH; Abel S; Camp CL; Suri RM; Ereth MH; Schaff HV J Thorac Cardiovasc Surg; 2011 Jun; 141(6):1410-6. PubMed ID: 21429525 [TBL] [Abstract][Full Text] [Related]
19. Surface modification of polyurethane films by plasma and ultraviolet light to improve haemocompatibility for artificial heart valves. Alves P; Cardoso R; Correia TR; Antunes BP; Correia IJ; Ferreira P Colloids Surf B Biointerfaces; 2014 Jan; 113():25-32. PubMed ID: 24060927 [TBL] [Abstract][Full Text] [Related]