BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

569 related articles for article (PubMed ID: 10027959)

  • 1. The complete nucleotide sequence of phi CTX, a cytotoxin-converting phage of Pseudomonas aeruginosa: implications for phage evolution and horizontal gene transfer via bacteriophages.
    Nakayama K; Kanaya S; Ohnishi M; Terawaki Y; Hayashi T
    Mol Microbiol; 1999 Jan; 31(2):399-419. PubMed ID: 10027959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular analysis of a cytotoxin-converting phage, phi CTX, of Pseudomonas aeruginosa: structure of the attP-cos-ctx region and integration into the serine tRNA gene.
    Hayashi T; Matsumoto H; Ohnishi M; Terawaki Y
    Mol Microbiol; 1993 Mar; 7(5):657-67. PubMed ID: 8469112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytotoxin-converting phages, phi CTX and PS21, are R pyocin-related phages.
    Hayashi T; Matsumoto H; Ohnishi M; Yokota S; Shinomiya T; Kageyama M; Terawaki Y
    FEMS Microbiol Lett; 1994 Oct; 122(3):239-44. PubMed ID: 7988867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-specific integration of the phage phi CTX genome into the Pseudomonas aeruginosa chromosome: characterization of the functional integrase gene located close to and upstream of attP.
    Wang Z; Xiong G; Lutz F
    Mol Gen Genet; 1995 Jan; 246(1):72-9. PubMed ID: 7823914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The genome of bacteriophage phiKZ of Pseudomonas aeruginosa.
    Mesyanzhinov VV; Robben J; Grymonprez B; Kostyuchenko VA; Bourkaltseva MV; Sykilinda NN; Krylov VN; Volckaert G
    J Mol Biol; 2002 Mar; 317(1):1-19. PubMed ID: 11916376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmids containing cos ends inhibit the replication of phage phi CTX in Pseudomonas aeruginosa.
    Xiong G; Oepen P; Geiben R; el-Idrissi AH; Lutz F
    Virus Res; 1996 Mar; 41(1):77-87. PubMed ID: 8725104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic and Transcriptional Mapping of PaMx41, Archetype of a New Lineage of Bacteriophages Infecting Pseudomonas aeruginosa.
    Cruz-Plancarte I; Cazares A; Guarneros G
    Appl Environ Microbiol; 2016 Nov; 82(22):6541-6547. PubMed ID: 27590812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Phenogenetic characterization of a group of giant Phi KZ-like bacteriophages of Pseudomonas aeruginosa].
    Burkal'tseva MV; Krylov VN; Pleteneva EA; Shaburova OV; Krylov SV; Volkart G; Sykilinda NN; Kurochkina LP; Mesianzhinov VV
    Genetika; 2002 Nov; 38(11):1470-9. PubMed ID: 12500672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic and proteomic analyses of the terminally redundant genome of the Pseudomonas aeruginosa phage PaP1: establishment of genus PaP1-like phages.
    Lu S; Le S; Tan Y; Zhu J; Li M; Rao X; Zou L; Li S; Wang J; Jin X; Huang G; Zhang L; Zhao X; Hu F
    PLoS One; 2013; 8(5):e62933. PubMed ID: 23675441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phage-conversion of cytotoxin production in Pseudomonas aeruginosa.
    Hayashi T; Baba T; Matsumoto H; Terawaki Y
    Mol Microbiol; 1990 Oct; 4(10):1703-9. PubMed ID: 2127632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core and accessory genome architecture in a group of Pseudomonas aeruginosa Mu-like phages.
    Cazares A; Mendoza-Hernández G; Guarneros G
    BMC Genomics; 2014 Dec; 15(1):1146. PubMed ID: 25527250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutational analysis of bacteriophage phi CTX cos site.
    Xiong G; Lutz F
    Virus Res; 1996 Dec; 46(1-2):149-56. PubMed ID: 9029787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the lipopolysaccharide core region as the receptor site for a cytotoxin-converting phage, phi CTX, of Pseudomonas aeruginosa.
    Yokota S; Hayashi T; Matsumoto H
    J Bacteriol; 1994 Sep; 176(17):5262-9. PubMed ID: 8071200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the lysogenic repressor (c) gene of the Pseudomonas aeruginosa transposable bacteriophage D3112.
    Salmon KA; Freedman O; Ritchings BW; DuBow MS
    Virology; 2000 Jun; 272(1):85-97. PubMed ID: 10873751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic characterization of Pseudomonas aeruginosa bacteriophage KPP10.
    Uchiyama J; Rashel M; Takemura I; Kato S; Ujihara T; Muraoka A; Matsuzaki S; Daibata M
    Arch Virol; 2012 Apr; 157(4):733-8. PubMed ID: 22218962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of a novel Pseudomonas aeruginosa bacteriophage, PAJU2, which is genetically related to bacteriophage D3.
    Uchiyama J; Rashel M; Matsumoto T; Sumiyama Y; Wakiguchi H; Matsuzaki S
    Virus Res; 2009 Jan; 139(1):131-4. PubMed ID: 19010363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome comparison of Pseudomonas aeruginosa large phages.
    Hertveldt K; Lavigne R; Pleteneva E; Sernova N; Kurochkina L; Korchevskii R; Robben J; Mesyanzhinov V; Krylov VN; Volckaert G
    J Mol Biol; 2005 Dec; 354(3):536-45. PubMed ID: 16256135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome sequence comparison and superinfection between two related Pseudomonas aeruginosa phages, D3112 and MP22.
    Heo YJ; Chung IY; Choi KB; Lau GW; Cho YH
    Microbiology (Reading); 2007 Sep; 153(Pt 9):2885-2895. PubMed ID: 17768233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of effective expression of the phage phiCTX-encoded ctx gene in Pseudomonas aeruginosa by a promoter upstream of the cos site.
    Xiong G; Lin J; Oepen P; Senerwa D; Lutz F
    Mol Gen Genet; 1998 Feb; 257(3):249-54. PubMed ID: 9520258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Properties of the new D3-like Pseudomonas aeruginosa bacteriophage phiPMG1: genome structure and prospects for the use in phage therapy].
    Krylov SV; Kropinski AM; Pleteneva EA; Shaburova OV; Burkal'tseva MV; Miroshnikov KA; Krylov VN
    Genetika; 2012 Sep; 48(9):1057-67. PubMed ID: 23113333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.