These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 10027978)

  • 1. The macrolide-ketolide antibiotic binding site is formed by structures in domains II and V of 23S ribosomal RNA.
    Hansen LH; Mauvais P; Douthwaite S
    Mol Microbiol; 1999 Jan; 31(2):623-31. PubMed ID: 10027978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A ketolide resistance mutation in domain II of 23S rRNA reveals the proximity of hairpin 35 to the peptidyl transferase centre.
    Xiong L; Shah S; Mauvais P; Mankin AS
    Mol Microbiol; 1999 Jan; 31(2):633-9. PubMed ID: 10027979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin.
    Poulsen SM; Kofoed C; Vester B
    J Mol Biol; 2000 Dec; 304(3):471-81. PubMed ID: 11090288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macrolide-ketolide inhibition of MLS-resistant ribosomes is improved by alternative drug interaction with domain II of 23S rRNA.
    Douthwaite S; Hansen LH; Mauvais P
    Mol Microbiol; 2000 Apr; 36(1):183-93. PubMed ID: 10760175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding site of the bridged macrolides in the Escherichia coli ribosome.
    Xiong L; Korkhin Y; Mankin AS
    Antimicrob Agents Chemother; 2005 Jan; 49(1):281-8. PubMed ID: 15616307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding site of macrolide antibiotics on the ribosome: new resistance mutation identifies a specific interaction of ketolides with rRNA.
    Garza-Ramos G; Xiong L; Zhong P; Mankin A
    J Bacteriol; 2001 Dec; 183(23):6898-907. PubMed ID: 11698379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ketolide antimicrobial activity persists after disruption of interactions with domain II of 23S rRNA.
    Novotny GW; Jakobsen L; Andersen NM; Poehlsgaard J; Douthwaite S
    Antimicrob Agents Chemother; 2004 Oct; 48(10):3677-83. PubMed ID: 15388419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural insight into the antibiotic action of telithromycin against resistant mutants.
    Berisio R; Harms J; Schluenzen F; Zarivach R; Hansen HA; Fucini P; Yonath A
    J Bacteriol; 2003 Jul; 185(14):4276-9. PubMed ID: 12837804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structural basis of macrolide-ribosome binding assessed using mutagenesis of 23S rRNA positions 2058 and 2059.
    Pfister P; Jenni S; Poehlsgaard J; Thomas A; Douthwaite S; Ban N; Böttger EC
    J Mol Biol; 2004 Oct; 342(5):1569-81. PubMed ID: 15364582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erythromycin, Cethromycin and Solithromycin display similar binding affinities to the E. coli's ribosome: A molecular simulation study.
    Nguyen HL; An PH; Thai NQ; Linh HQ; Li MS
    J Mol Graph Model; 2019 Sep; 91():80-90. PubMed ID: 31200217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Erythromycin binding is reduced in ribosomes with conformational alterations in the 23 S rRNA peptidyl transferase loop.
    Douthwaite S; Aagaard C
    J Mol Biol; 1993 Aug; 232(3):725-31. PubMed ID: 7689111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structures of four macrolide antibiotics bound to the large ribosomal subunit.
    Hansen JL; Ippolito JA; Ban N; Nissen P; Moore PB; Steitz TA
    Mol Cell; 2002 Jul; 10(1):117-28. PubMed ID: 12150912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct mode of interaction of a novel ketolide antibiotic that displays enhanced antimicrobial activity.
    Kouvela EC; Kalpaxis DL; Wilson DN; Dinos GP
    Antimicrob Agents Chemother; 2009 Apr; 53(4):1411-9. PubMed ID: 19164155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition determinants for proteins and antibiotics within 23S rRNA.
    Douthwalte S; Voldborg B; Hansen LH; Rosendahl G; Vester B
    Biochem Cell Biol; 1995; 73(11-12):1179-85. PubMed ID: 8722035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structures of ketolides and macrolides determine their mode of interaction with the ribosomal target site.
    Douthwaite S; Champney WS
    J Antimicrob Chemother; 2001 Sep; 48 Suppl T1():1-8. PubMed ID: 11566971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance.
    Tu D; Blaha G; Moore PB; Steitz TA
    Cell; 2005 Apr; 121(2):257-70. PubMed ID: 15851032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action.
    Dunkle JA; Xiong L; Mankin AS; Cate JH
    Proc Natl Acad Sci U S A; 2010 Oct; 107(40):17152-7. PubMed ID: 20876128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A long-distance rRNA base pair impacts the ability of macrolide antibiotics to kill bacteria.
    Svetlov MS; Cohen S; Alsuhebany N; Vázquez-Laslop N; Mankin AS
    Proc Natl Acad Sci U S A; 2020 Jan; 117(4):1971-1975. PubMed ID: 31932436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding and action of CEM-101, a new fluoroketolide antibiotic that inhibits protein synthesis.
    Llano-Sotelo B; Dunkle J; Klepacki D; Zhang W; Fernandes P; Cate JH; Mankin AS
    Antimicrob Agents Chemother; 2010 Dec; 54(12):4961-70. PubMed ID: 20855725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The pleuromutilin drugs tiamulin and valnemulin bind to the RNA at the peptidyl transferase centre on the ribosome.
    Poulsen SM; Karlsson M; Johansson LB; Vester B
    Mol Microbiol; 2001 Sep; 41(5):1091-9. PubMed ID: 11555289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.