These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 10028237)

  • 1. Calculation of NMR relaxation, covolume, and scattering-related properties of bead models using the SOLPRO computer program.
    García de la Torre J; Harding SE; Carrasco B
    Eur Biophys J; 1999; 28(2):119-32. PubMed ID: 10028237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SOLPRO: theory and computer program for the prediction of SOLution PROperties of rigid macromolecules and bioparticles.
    García de la Torre J; Carrasco B; Harding SE
    Eur Biophys J; 1997; 25(5-6):361-72. PubMed ID: 9213556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MULTIHYDRO and MONTEHYDRO: conformational search and Monte Carlo calculation of solution properties of rigid or flexible bead models.
    Garcia de la Torre J; Ortega A; Perez Sanchez HE; Hernandez Cifre JG
    Biophys Chem; 2005 Jul; 116(2):121-8. PubMed ID: 15950824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HYDRO: a computer program for the prediction of hydrodynamic properties of macromolecules.
    Garcia de la Torre J; Navarro S; Lopez Martinez MC; Diaz FG; Lopez Cascales JJ
    Biophys J; 1994 Aug; 67(2):530-1. PubMed ID: 7948671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient, accurate calculation of rotational diffusion and NMR relaxation of globular proteins from atomic-level structures and approximate hydrodynamic calculations.
    Ortega A; García de la Torre J
    J Am Chem Soc; 2005 Sep; 127(37):12764-5. PubMed ID: 16159246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bead-model calculation of scattering diagrams: Brownian dynamics study of flexibility in immunoglobulin IgG1.
    Díaz FG; López Cascales JJ; García de la Torre J
    J Biochem Biophys Methods; 1993 Jul; 26(4):261-71. PubMed ID: 8409198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Building hydrodynamic bead-shell models for rigid bioparticles of arbitrary shape.
    Garcia de la Torre J
    Biophys Chem; 2001 Dec; 94(3):265-74. PubMed ID: 11804736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution structure, rotational diffusion anisotropy and local backbone dynamics of Rhodobacter capsulatus cytochrome c2.
    Cordier F; Caffrey M; Brutscher B; Cusanovich MA; Marion D; Blackledge M
    J Mol Biol; 1998 Aug; 281(2):341-61. PubMed ID: 9698552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel size-independent modeling of the dilute solution conformation of the immunoglobulin IgG Fab' domain using SOLPRO and ELLIPS.
    Carrasco B; de la Torre JG; Byron O; King D; Walters C; Jones S; Harding SE
    Biophys J; 1999 Dec; 77(6):2902-10. PubMed ID: 10585914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bead modeling using HYDRO and SOLPRO of the conformation of multisubunit proteins: sunflower and rape-seed 11S globulins.
    Carrasco B; Harding SE; de la Torre JG
    Biophys Chem; 1998 Aug; 74(2):127-33. PubMed ID: 17029739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution structure of biopolymers: a new method of constructing a bead model.
    Banachowicz E; Gapiński J; Patkowski A
    Biophys J; 2000 Jan; 78(1):70-8. PubMed ID: 10620274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR measurement of nonlocal dispersion in complex flows.
    Hunter MW; Callaghan PT
    Phys Rev Lett; 2007 Nov; 99(21):210602. PubMed ID: 18233204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculation of the solution properties of flexible macromolecules: methods and applications.
    García de la Torre J; Pérez Sánchez HE; Ortega A; Hernández JG; Fernandes MX; Díaz FG; López Martínez MC
    Eur Biophys J; 2003 Aug; 32(5):477-86. PubMed ID: 12698288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimisation of NMR dynamic models I. Minimisation algorithms and their performance within the model-free and Brownian rotational diffusion spaces.
    d'Auvergne EJ; Gooley PR
    J Biomol NMR; 2008 Feb; 40(2):107-19. PubMed ID: 18085410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HYDRONMR: prediction of NMR relaxation of globular proteins from atomic-level structures and hydrodynamic calculations.
    García de la Torre J; Huertas ML; Carrasco B
    J Magn Reson; 2000 Nov; 147(1):138-46. PubMed ID: 11042057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The spectrum and angular distribution of x rays scattered from a water phantom.
    Cheng CW; Taylor KW; Holloway AF
    Med Phys; 1995 Aug; 22(8):1235-45. PubMed ID: 7476709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water rotational relaxation and diffusion in hydrated lysozyme.
    Marchi M; Sterpone F; Ceccarelli M
    J Am Chem Soc; 2002 Jun; 124(23):6787-91. PubMed ID: 12047201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macromolecular crowding in biological systems: hydrodynamics and NMR methods.
    Bernadó P; García de la Torre J; Pons M
    J Mol Recognit; 2004; 17(5):397-407. PubMed ID: 15362098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. COVOL: an interactive program for evaluating second virial coefficients from the triaxial shape or dimensions of rigid macromolecules.
    Harding SE; Horton JC; Jones S; Thornton JM; Winzor DJ
    Biophys J; 1999 May; 76(5):2432-8. PubMed ID: 10233060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon-13 chemical shift anisotropy in DNA bases from field dependence of solution NMR relaxation rates.
    Ying J; Grishaev A; Bax A
    Magn Reson Chem; 2006 Mar; 44(3):302-10. PubMed ID: 16477676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.