BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

799 related articles for article (PubMed ID: 10029055)

  • 1. Energy cost of propulsion in standard and ultralight wheelchairs in people with spinal cord injuries.
    Beekman CE; Miller-Porter L; Schoneberger M
    Phys Ther; 1999 Feb; 79(2):146-58. PubMed ID: 10029055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Power-assisted wheels ease energy costs and perceptual responses to wheelchair propulsion in persons with shoulder pain and spinal cord injury.
    Nash MS; Koppens D; van Haaren M; Sherman AL; Lippiatt JP; Lewis JE
    Arch Phys Med Rehabil; 2008 Nov; 89(11):2080-5. PubMed ID: 18996235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological response to the ambulatory performance of hand-rim and arm-crank propulsion systems.
    Mukherjee G; Samanta A
    J Rehabil Res Dev; 2001; 38(4):391-9. PubMed ID: 11563492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Filter frequency selection for manual wheelchair biomechanics.
    Cooper RA; DiGiovine CP; Boninger ML; Shimada SD; Koontz AM; Baldwin MA
    J Rehabil Res Dev; 2002; 39(3):323-36. PubMed ID: 12173753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of a pushrim-activated, power-assisted wheelchair.
    Cooper RA; Fitzgerald SG; Boninger ML; Prins K; Rentschler AJ; Arva J; O'connor TJ
    Arch Phys Med Rehabil; 2001 May; 82(5):702-8. PubMed ID: 11346854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of verbal training and visual feedback on manual wheelchair propulsion.
    DeGroot KK; Hollingsworth HH; Morgan KA; Morris CL; Gray DB
    Disabil Rehabil Assist Technol; 2009 Mar; 4(2):86-94. PubMed ID: 19253097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved efficiency with a wheelchair propelled by the legs using voluntary activity or electric stimulation.
    Stein RB; Chong SL; James KB; Bell GJ
    Arch Phys Med Rehabil; 2001 Sep; 82(9):1198-203. PubMed ID: 11552191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of shoulder muscle electromyographic activity during standard manual wheelchair and push-rim activated power assisted wheelchair propulsion in persons with complete tetraplegia.
    Lighthall-Haubert L; Requejo PS; Mulroy SJ; Newsam CJ; Bontrager E; Gronley JK; Perry J
    Arch Phys Med Rehabil; 2009 Nov; 90(11):1904-15. PubMed ID: 19887216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of normative values for 20 min exercise of wheelchair propulsion by spinal cord injury patients.
    Coutinho AC; Neto FR; Perna CE
    Spinal Cord; 2013 Oct; 51(10):755-60. PubMed ID: 24042996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lightweight and ultralight wheelchairs: propulsion and preferences of two young children with spina bifida.
    Meiser MJ; McEwen IR
    Pediatr Phys Ther; 2007; 19(3):245-53. PubMed ID: 17700354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinematics of wheelchair propulsion in adults and children with spinal cord injury.
    Bednarczyk JH; Sanderson DJ
    Arch Phys Med Rehabil; 1994 Dec; 75(12):1327-34. PubMed ID: 7993172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship between perceived exertion and physiologic indicators of stress during graded arm exercise in persons with spinal cord injuries.
    Lewis JE; Nash MS; Hamm LF; Martins SC; Groah SL
    Arch Phys Med Rehabil; 2007 Sep; 88(9):1205-11. PubMed ID: 17826469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Submaximal physical strain and peak performance in handcycling versus handrim wheelchair propulsion.
    Dallmeijer AJ; Zentgraaff ID; Zijp NI; van der Woude LH
    Spinal Cord; 2004 Feb; 42(2):91-8. PubMed ID: 14765141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical advantage in wheelchair lever propulsion: effect on physical strain and efficiency.
    van der Woude LH; Botden E; Vriend I; Veeger D
    J Rehabil Res Dev; 1997 Jul; 34(3):286-94. PubMed ID: 9239621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shoulder biomechanics during the push phase of wheelchair propulsion: a multisite study of persons with paraplegia.
    Collinger JL; Boninger ML; Koontz AM; Price R; Sisto SA; Tolerico ML; Cooper RA
    Arch Phys Med Rehabil; 2008 Apr; 89(4):667-76. PubMed ID: 18373997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Course of gross mechanical efficiency in handrim wheelchair propulsion during rehabilitation of people with spinal cord injury: a prospective cohort study.
    de Groot S; Dallmeijer AJ; Kilkens OJ; van Asbeck FW; Nene AV; Angenot EL; Post MW; van der Woude LH
    Arch Phys Med Rehabil; 2005 Jul; 86(7):1452-60. PubMed ID: 16003680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of hand cycling on physical capacity in the rehabilitation of persons with a spinal cord injury: a longitudinal cohort study.
    Valent LJ; Dallmeijer AJ; Houdijk H; Slootman HJ; Post MW; van der Woude LH
    Arch Phys Med Rehabil; 2008 Jun; 89(6):1016-22. PubMed ID: 18503794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of metabolic cost, performance, and efficiency of propulsion using an ergonomic hand drive mechanism and a conventional manual wheelchair.
    Zukowski LA; Roper JA; Shechtman O; Otzel DM; Bouwkamp J; Tillman MD
    Arch Phys Med Rehabil; 2014 Mar; 95(3):546-51. PubMed ID: 24016403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upper limb joint kinetics during manual wheelchair propulsion in patients with different levels of spinal cord injury.
    Gil-Agudo A; Del Ama-Espinosa A; Pérez-Rizo E; Pérez-Nombela S; Pablo Rodríguez-Rodríguez L
    J Biomech; 2010 Sep; 43(13):2508-15. PubMed ID: 20541760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of steering on the physiological energy cost of wheelchair propulsion.
    Reid M; Lawrie AT; Hunter J; Warren PM
    Scand J Rehabil Med; 1990; 22(3):139-43. PubMed ID: 2244191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.