These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 10029144)
1. Totally implantable artificial hearts and left ventricular assist devices: selecting impermeable polycarbonate urethane to manufacture ventricles. Yang M; Zhang Z; Hahn C; Laroche G; King MW; Guidoin R J Biomed Mater Res; 1999; 48(1):13-23. PubMed ID: 10029144 [TBL] [Abstract][Full Text] [Related]
2. Assessing the resistance to calcification of polyurethane membranes used in the manufacture of ventricles for a totally implantable artificial heart. Yang M; Zhang Z; Hahn C; King MW; Guidoin R J Biomed Mater Res; 1999; 48(5):648-59. PubMed ID: 10490678 [TBL] [Abstract][Full Text] [Related]
3. Selection of a polyurethane membrane for the manufacture of ventricles for a totally implantable artificial heart: blood compatibility and biocompatibility studies. Bélanger MC; Marois Y; Roy R; Mehri Y; Wagner E; Zhang Z; King MW; Yang M; Hahn C; Guidoin R Artif Organs; 2000 Nov; 24(11):879-88. PubMed ID: 11119076 [TBL] [Abstract][Full Text] [Related]
4. Analysis and evaluation of a biomedical polycarbonate urethane tested in an in vitro study and an ovine arthroplasty model. Part I: materials selection and evaluation. Khan I; Smith N; Jones E; Finch DS; Cameron RE Biomaterials; 2005 Feb; 26(6):621-31. PubMed ID: 15282140 [TBL] [Abstract][Full Text] [Related]
5. Comparative blood compatibility of polyether vs polycarbonate urethanes by epifluorescent video microscopy. Mizumoto D; Nojiri C; Inomata Y; Onishi M; Waki M; Kido T; Sugiyama T; Senshu K; Uchida K; Sakai K; Akutsu T ASAIO J; 1997; 43(5):M500-4. PubMed ID: 9360093 [TBL] [Abstract][Full Text] [Related]
6. Chemical and physical characterization of a novel poly(carbonate urea) urethane surface with protein crosslinker sites. Phaneuf MD; Quist WC; LoGerfo FW; Szycher M; Dempsey DJ; Bide MJ J Biomater Appl; 1997 Oct; 12(2):100-20. PubMed ID: 9399137 [TBL] [Abstract][Full Text] [Related]
7. Enzyme-induced biodegradation of polycarbonate-polyurethanes: dependence on hard-segment chemistry. Tang YW; Labow RS; Santerre JP J Biomed Mater Res; 2001 Dec; 57(4):597-611. PubMed ID: 11553891 [TBL] [Abstract][Full Text] [Related]
8. Analysis and evaluation of a biomedical polycarbonate urethane tested in an in vitro study and an ovine arthroplasty model. Part II: in vivo investigation. Khan I; Smith N; Jones E; Finch DS; Cameron RE Biomaterials; 2005 Feb; 26(6):633-43. PubMed ID: 15282141 [TBL] [Abstract][Full Text] [Related]
9. Chemical stability of polyether urethanes versus polycarbonate urethanes. Tanzi MC; Mantovani D; Petrini P; Guidoin R; Laroche G J Biomed Mater Res; 1997 Sep; 36(4):550-9. PubMed ID: 9294772 [TBL] [Abstract][Full Text] [Related]
10. Enzyme-induced biodegradation of polycarbonate polyurethanes: dependence on hard-segment concentration. Tang YW; Labow RS; Santerre JP J Biomed Mater Res; 2001 Sep; 56(4):516-28. PubMed ID: 11400129 [TBL] [Abstract][Full Text] [Related]
11. Isolation of methylene dianiline and aqueous-soluble biodegradation products from polycarbonate-polyurethanes. Tang YW; Labow RS; Santerre JP Biomaterials; 2003 Aug; 24(17):2805-19. PubMed ID: 12742719 [TBL] [Abstract][Full Text] [Related]
12. Influence of hydroxyl-terminated polydimethylsiloxane on high-strength biocompatible polycarbonate urethane films. Zhu R; Wang X; Yang J; Wang Y; Zhang Z; Hou Y; Lin F Biomed Mater; 2016 Dec; 12(1):015011. PubMed ID: 27934785 [TBL] [Abstract][Full Text] [Related]
13. In vitro stability of polyether and polycarbonate urethanes. Tanzi MC; Farè S; Petrini P J Biomater Appl; 2000 Apr; 14(4):325-48. PubMed ID: 10794506 [TBL] [Abstract][Full Text] [Related]
14. Long-term in vivo biostability of poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers. Simmons A; Hyvarinen J; Odell RA; Martin DJ; Gunatillake PA; Noble KR; Poole-Warren LA Biomaterials; 2004 Sep; 25(20):4887-900. PubMed ID: 15109849 [TBL] [Abstract][Full Text] [Related]
15. Long-term in vitro hydrolytic stability of thermoplastic polyurethanes. Mishra A; Seethamraju K; Delaney J; Willoughby P; Faust R J Biomed Mater Res A; 2015 Dec; 103(12):3798-806. PubMed ID: 26097127 [TBL] [Abstract][Full Text] [Related]
16. Synthesis, characterization and ex vivo evaluation of polydimethylsiloxane polyurea-urethanes. Lim F; Yang CZ; Cooper SL Biomaterials; 1994 May; 15(6):408-16. PubMed ID: 8080930 [TBL] [Abstract][Full Text] [Related]
17. A capillary method to measure water transmission through polyurethane membranes. Yang M; Deng X; Laroche G; Hahn C; King MW; Guidoin RG ASAIO J; 1997; 43(6):890-6. PubMed ID: 9386838 [TBL] [Abstract][Full Text] [Related]
18. Structural characterization, mechanical properties, and in vitro cytocompatibility evaluation of fibrous polycarbonate urethane membranes for biomedical applications. Arjun GN; Ramesh P J Biomed Mater Res A; 2012 Nov; 100(11):3042-50. PubMed ID: 22707288 [TBL] [Abstract][Full Text] [Related]
19. The effect of hard segment size on the hydrolytic stability of polyether-urea-urethanes when exposed to cholesterol esterase. Santerre JP; Labow RS J Biomed Mater Res; 1997 Aug; 36(2):223-32. PubMed ID: 9261684 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and characterization of shape-memory poly carbonate urethane microspheres for future vascular embolization. Liu R; Dai H; Zhou Q; Zhang Q; Zhang P J Biomater Sci Polym Ed; 2016 Aug; 27(12):1248-61. PubMed ID: 27193120 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]