These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 10030036)

  • 21. Effect of heating rate on the thermal inactivation of Listeria monocytogenes.
    Stephens PJ; Cole MB; Jones MV
    J Appl Bacteriol; 1994 Dec; 77(6):702-8. PubMed ID: 7822230
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal resistance of Listeria monocytogenes in sausage meat.
    Farber JM; Hughes A; Holley R; Brown B
    Acta Microbiol Hung; 1989; 36(2-3):273-5. PubMed ID: 2517172
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heat resistance of Listeria monocytogenes.
    Suarez Fernandez G
    Acta Microbiol Hung; 1989; 36(2-3):277-80. PubMed ID: 2517173
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal resistance of Listeria monocytogenes.
    Lemaire V; Cerf O; Audurier A
    Ann Rech Vet; 1989; 20(4):493-500. PubMed ID: 2515785
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sensitivity of nisin-resistant Listeria monocytogenes to heat and the synergistic action of heat and nisin.
    Modi KD; Chikindas ML; Montville TJ
    Lett Appl Microbiol; 2000 Mar; 30(3):249-53. PubMed ID: 10747260
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of resistance in Cronobacter sakazakii ATCC 29544 to thermal and nonthermal processes after exposure to stressing environmental conditions.
    Arroyo C; Cebrián G; Condón S; Pagán R
    J Appl Microbiol; 2012 Mar; 112(3):561-70. PubMed ID: 22221523
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heat resistance of Listeria monocytogenes in vegetables: evaluation of blanching processes.
    Mazzotta AS
    J Food Prot; 2001 Mar; 64(3):385-7. PubMed ID: 11252484
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The heat-shock response of Listeria monocytogenes comprises genes involved in heat shock, cell division, cell wall synthesis, and the SOS response.
    van der Veen S; Hain T; Wouters JA; Hossain H; de Vos WM; Abee T; Chakraborty T; Wells-Bennik MHJ
    Microbiology (Reading); 2007 Oct; 153(Pt 10):3593-3607. PubMed ID: 17906156
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production of listeriolysin O by Listeria monocytogenes (Scott A) under heat-shock conditions.
    Sampathkumar B; Xavier IJ; Yu LS; Khachatourians GG
    Int J Food Microbiol; 1999 May; 48(2):131-7. PubMed ID: 10426449
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functionalizing soy protein nano-aggregates with pH-shifting and mano-thermo-sonication.
    Yildiz G; Andrade J; Engeseth NE; Feng H
    J Colloid Interface Sci; 2017 Nov; 505():836-846. PubMed ID: 28672263
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermal resistance of wild-type and antibiotic-resistant Listeria monocytogenes in meat and potato substrates.
    Walsh D; Sheridan JJ; Duffy G; Blair IS; McDowell DA; Harrington D
    J Appl Microbiol; 2001 Apr; 90(4):555-60. PubMed ID: 11309067
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Effect of Sublethal Heat Shock and Growth Atmosphere on the Heat Resistance of Listeria monocytogenes Scott A.
    Linton RH; Webster JB; Pierson MD; Bishop JR; Hackney CR
    J Food Prot; 1992 Feb; 55(2):84-87. PubMed ID: 31071767
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inactivation of Salmonella enterica and Listeria monocytogenes in cantaloupe puree by high hydrostatic pressure with/without added ascorbic acid.
    Mukhopadhyay S; Sokorai K; Ukuku D; Fan X; Juneja V; Sites J; Cassidy J
    Int J Food Microbiol; 2016 Oct; 235():77-84. PubMed ID: 27441819
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling optimal process conditions for UV-heat inactivation of foodborne pathogens in liquid foods.
    Gayán E; Serrano MJ; Álvarez I; Condón S
    Food Microbiol; 2016 Dec; 60():13-20. PubMed ID: 27554141
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of general stress-response alternative sigma factors σ(S) (RpoS) and σ(B) (SigB) in bacterial heat resistance as a function of treatment medium pH.
    Ait-Ouazzou A; Mañas P; Condón S; Pagán R; García-Gonzalo D
    Int J Food Microbiol; 2012 Feb; 153(3):358-64. PubMed ID: 22177853
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combined effect of benzalkonium chloride and ultrasound against Listeria monocytogenes biofilm on plastic surface.
    Torlak E; Sert D
    Lett Appl Microbiol; 2013 Sep; 57(3):220-6. PubMed ID: 23682619
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of temperature and growth rate on the susceptibility of Listeria monocytogenes to environmental stress conditions.
    Patchett RA; Watson N; Fernandez PS; Kroll RG
    Lett Appl Microbiol; 1996 Feb; 22(2):121-4. PubMed ID: 8936371
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of pre- and post-heat shock temperature on the persistence of thermotolerance and heat shock-induced proteins in Listeria monocytogenes.
    Jørgensen F; Panaretou B; Stephens PJ; Knøchel S
    J Appl Bacteriol; 1996 Feb; 80(2):216-24. PubMed ID: 8642016
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A predictive model for the influence of food components on survival of Listeria monocytogenes LM 54004 under high hydrostatic pressure and mild heat conditions.
    Gao YL; Ju XR; Wu-Ding
    Int J Food Microbiol; 2007 Jul; 117(3):287-94. PubMed ID: 17537535
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heat resistance of Listeria monocytogenes in semi-skim milk supplemented with vanillin.
    Cava-Roda RM; Taboada A; Palop A; López-Gómez A; Marin-Iniesta F
    Int J Food Microbiol; 2012 Jul; 157(2):314-8. PubMed ID: 22633800
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.