These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 10030596)
1. Stabilization of fibronectin mats with micromolar concentrations of copper. Ahmed Z; Idowu BD; Brown RA Biomaterials; 1999 Feb; 20(3):201-9. PubMed ID: 10030596 [TBL] [Abstract][Full Text] [Related]
2. Adhesion, alignment, and migration of cultured Schwann cells on ultrathin fibronectin fibres. Ahmed Z; Brown RA Cell Motil Cytoskeleton; 1999; 42(4):331-43. PubMed ID: 10223638 [TBL] [Abstract][Full Text] [Related]
3. Stabilisation of cables of fibronectin with micromolar concentrations of copper: in vitro cell substrate properties. Ahmed Z; Briden A; Hall S; Brown RA Biomaterials; 2004 Feb; 25(5):803-12. PubMed ID: 14609669 [TBL] [Abstract][Full Text] [Related]
4. Production of artificial-orientated mats and strands from plasma fibronectin: a morphological study. Ejim OS; Blunn GW; Brown RA Biomaterials; 1993 Aug; 14(10):743-8. PubMed ID: 8218723 [TBL] [Abstract][Full Text] [Related]
5. Nerve guide material made from fibronectin: assessment of in vitro properties. Ahmed Z; Underwood S; Brown RA Tissue Eng; 2003 Apr; 9(2):219-31. PubMed ID: 12740085 [TBL] [Abstract][Full Text] [Related]
6. Mats made from fibronectin support oriented growth of axons in the damaged spinal cord of the adult rat. King VR; Henseler M; Brown RA; Priestley JV Exp Neurol; 2003 Aug; 182(2):383-98. PubMed ID: 12895449 [TBL] [Abstract][Full Text] [Related]
7. Improving cytoactive of endothelial cell by introducing fibronectin to the surface of poly L-Lactic acid fiber mats via dopamine. Yang W; Zhang X; Wu K; Liu X; Jiao Y; Zhou C Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():373-9. PubMed ID: 27612725 [TBL] [Abstract][Full Text] [Related]
15. The influence of dental metal alloys on cell proliferation and fibronectin arrangement in human fibroblast cultures. Grill V; Sandrucci MA; Basa M; Di Lenarda R; Dorigo E; Narducci P; Martelli AM; Delbello G; Bareggi R Arch Oral Biol; 1997 Sep; 42(9):641-7. PubMed ID: 9403118 [TBL] [Abstract][Full Text] [Related]
16. In vitro biocompatibility of electrospun poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fiber mats. Suwantong O; Waleetorncheepsawat S; Sanchavanakit N; Pavasant P; Cheepsunthorn P; Bunaprasert T; Supaphol P Int J Biol Macromol; 2007 Feb; 40(3):217-23. PubMed ID: 16949148 [TBL] [Abstract][Full Text] [Related]
17. Characterization of non-neuronal elements within fibronectin mats implanted into the damaged adult rat spinal cord. King VR; Phillips JB; Hunt-Grubbe H; Brown R; Priestley JV Biomaterials; 2006 Jan; 27(3):485-96. PubMed ID: 16102813 [TBL] [Abstract][Full Text] [Related]
18. Fluid shear in viscous fibronectin gels allows aggregation of fibrous materials for CNS tissue engineering. Phillips JB; King VR; Ward Z; Porter RA; Priestley JV; Brown RA Biomaterials; 2004 Jun; 25(14):2769-79. PubMed ID: 14962555 [TBL] [Abstract][Full Text] [Related]
19. Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering. Zhu X; Cui W; Li X; Jin Y Biomacromolecules; 2008 Jul; 9(7):1795-801. PubMed ID: 18578495 [TBL] [Abstract][Full Text] [Related]
20. Electrospun chitosan-based nanofiber mats loaded with Garcinia mangostana extracts. Charernsriwilaiwat N; Rojanarata T; Ngawhirunpat T; Sukma M; Opanasopit P Int J Pharm; 2013 Aug; 452(1-2):333-43. PubMed ID: 23680732 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]