These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 10030598)

  • 1. Osteoblast population migration characteristics on substrates modified with immobilized adhesive peptides.
    Dee KC; Anderson TT; Bizios R
    Biomaterials; 1999 Feb; 20(3):221-7. PubMed ID: 10030598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and function of novel osteoblast-adhesive peptides for chemical modification of biomaterials.
    Dee KC; Andersen TT; Bizios R
    J Biomed Mater Res; 1998 Jun; 40(3):371-7. PubMed ID: 9570067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conditions which promote mineralization at the bone-implant interface: a model in vitro study.
    Dee KC; Rueger DC; Andersen TT; Bizios R
    Biomaterials; 1996 Jan; 17(2):209-15. PubMed ID: 8624397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attachment, proliferation, and migration of marrow stromal osteoblasts cultured on biomimetic hydrogels modified with an osteopontin-derived peptide.
    Shin H; Zygourakis K; Farach-Carson MC; Yaszemski MJ; Mikos AG
    Biomaterials; 2004 Feb; 25(5):895-906. PubMed ID: 14609678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Covalent surface immobilization of Arg-Gly-Asp- and Tyr-Ile-Gly-Ser-Arg-containing peptides to obtain well-defined cell-adhesive substrates.
    Massia SP; Hubbell JA
    Anal Biochem; 1990 Jun; 187(2):292-301. PubMed ID: 2382830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response of human osteoblasts to implant materials: integrin-mediated adhesion.
    Gronowicz G; McCarthy MB
    J Orthop Res; 1996 Nov; 14(6):878-87. PubMed ID: 8982129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, analytical characterization, and osteoblast adhesion properties on RGD-grafted polypyrrole coatings on titanium substrates.
    De Giglio E; Sabbatini L; Colucci S; Zambonin G
    J Biomater Sci Polym Ed; 2000; 11(10):1073-83. PubMed ID: 11211158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms underlying the attachment and spreading of human osteoblasts: from transient interactions to focal adhesions on vitronectin-grafted bioactive surfaces.
    Brun P; Scorzeto M; Vassanelli S; Castagliuolo I; Palù G; Ghezzo F; Messina GM; Iucci G; Battaglia V; Sivolella S; Bagno A; Polzonetti G; Marletta G; Dettin M
    Acta Biomater; 2013 Apr; 9(4):6105-15. PubMed ID: 23261922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic peptide surfaces that regulate adhesion, spreading, cytoskeletal organization, and mineralization of the matrix deposited by osteoblast-like cells.
    Rezania A; Healy KE
    Biotechnol Prog; 1999; 15(1):19-32. PubMed ID: 9933510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrin subunits responsible for adhesion of human osteoblast-like cells to biomimetic peptide surfaces.
    Rezania A; Healy KE
    J Orthop Res; 1999 Jul; 17(4):615-23. PubMed ID: 10459771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced osteoblast functions on RGD immobilized surface.
    Huang H; Zhao Y; Liu Z; Zhang Y; Zhang H; Fu T; Ma X
    J Oral Implantol; 2003; 29(2):73-9. PubMed ID: 12760450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collagen-like polypeptide poly(Pro-Hyp-Gly) conjugated with Gly-Arg-Gly-Asp-Ser and Pro-His-Ser-Arg-Asn peptides enchances cell adhesion, migration, and stratification.
    Shibasaki Y; Hirohara S; Terada K; Ando T; Tanihara M
    Biopolymers; 2011; 96(3):302-15. PubMed ID: 20939034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surfaces modified with covalently-immobilized adhesive peptides affect fibroblast population motility.
    Olbrich KC; Andersen TT; Blumenstock FA; Bizios R
    Biomaterials; 1996 Apr; 17(8):759-64. PubMed ID: 8730959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arginine-glycine-aspartic acid modified rosette nanotube-hydrogel composites for bone tissue engineering.
    Zhang L; Rakotondradany F; Myles AJ; Fenniri H; Webster TJ
    Biomaterials; 2009 Mar; 30(7):1309-20. PubMed ID: 19073342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human endothelial cell interactions with surface-coupled adhesion peptides on a nonadhesive glass substrate and two polymeric biomaterials.
    Massia SP; Hubbell JA
    J Biomed Mater Res; 1991 Feb; 25(2):223-42. PubMed ID: 1829082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide inhibitors of fibronectin, laminin, and other adhesion molecules: unique and shared features.
    Yamada KM; Kennedy DW
    J Cell Physiol; 1987 Jan; 130(1):21-8. PubMed ID: 3805128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelial cell migration on surfaces modified with immobilized adhesive peptides.
    Kouvroukoglou S; Dee KC; Bizios R; McIntire LV; Zygourakis K
    Biomaterials; 2000 Sep; 21(17):1725-33. PubMed ID: 10905454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteoblast-like cell adhesion to bone sialoprotein peptides.
    Rapuano BE; Wu C; MacDonald DE
    J Orthop Res; 2004 Mar; 22(2):353-61. PubMed ID: 15013096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of differentiation and mineralization of marrow stromal cells cultured on biomimetic hydrogels modified with Arg-Gly-Asp containing peptides.
    Shin H; Zygourakis K; Farach-Carson MC; Yaszemski MJ; Mikos AG
    J Biomed Mater Res A; 2004 Jun; 69(3):535-43. PubMed ID: 15127400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison between RGD-peptide-modified titanium and borosilicate surfaces.
    Senyah N; Hildebrand G; Liefeith K
    Anal Bioanal Chem; 2005 Nov; 383(5):758-62. PubMed ID: 16151591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.