These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 10030603)
1. Tyrosine-PEG-derived poly(ether carbonate)s as new biomaterials. Part II: study of inverse temperature transitions. Yu C; Mielewczyk SS; Breslauer KJ; Kohn J Biomaterials; 1999 Feb; 20(3):265-72. PubMed ID: 10030603 [TBL] [Abstract][Full Text] [Related]
2. Tyrosine-PEG-derived poly(ether carbonate)s as new biomaterials. Part I: synthesis and evaluation. Yu C; Kohn J Biomaterials; 1999 Feb; 20(3):253-64. PubMed ID: 10030602 [TBL] [Abstract][Full Text] [Related]
3. Poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol) as candidate biomaterials: characterization and mechanical property study. Li X; Loh XJ; Wang K; He C; Li J Biomacromolecules; 2005; 6(5):2740-7. PubMed ID: 16153114 [TBL] [Abstract][Full Text] [Related]
4. Thermoresponsive biodegradable PEG-PCL-PEG based injectable hydrogel for pulsatile insulin delivery. Payyappilly S; Dhara S; Chattopadhyay S J Biomed Mater Res A; 2014 May; 102(5):1500-9. PubMed ID: 23681592 [TBL] [Abstract][Full Text] [Related]
7. Thermoresponsive nanostructured polycarbonate block copolymers as biodegradable therapeutic delivery carriers. Kim SH; Tan JP; Fukushima K; Nederberg F; Yang YY; Waymouth RM; Hedrick JL Biomaterials; 2011 Aug; 32(23):5505-14. PubMed ID: 21529935 [TBL] [Abstract][Full Text] [Related]
8. Local, Controlled Delivery of Local Anesthetics In Vivo from Polymer - Xerogel Composites. Qu H; Costache MC; Inan S; Cowan A; Devore D; Ducheyne P Pharm Res; 2016 Mar; 33(3):729-38. PubMed ID: 26555665 [TBL] [Abstract][Full Text] [Related]
9. Ethylene oxide's role as a reactive agent during sterilization: effects of polymer composition and device architecture. Phillip E; Murthy NS; Bolikal D; Narayanan P; Kohn J; Lavelle L; Bodnar S; Pricer K J Biomed Mater Res B Appl Biomater; 2013 May; 101(4):532-40. PubMed ID: 23296710 [TBL] [Abstract][Full Text] [Related]
10. Small changes in polymer chemistry have a large effect on the bone-implant interface: evaluation of a series of degradable tyrosine-derived polycarbonates in bone defects. James K; Levene H; Parsons JR; Kohn J Biomaterials; 1999 Dec; 20(23-24):2203-12. PubMed ID: 10614927 [TBL] [Abstract][Full Text] [Related]
11. Effect of polymer composition on rheological and degradation properties of temperature-responsive gelling systems composed of acyl-capped PCLA-PEG-PCLA. Petit A; Müller B; Meijboom R; Bruin P; van de Manakker F; Versluijs-Helder M; de Leede LG; Doornbos A; Landin M; Hennink WE; Vermonden T Biomacromolecules; 2013 Sep; 14(9):3172-82. PubMed ID: 23875877 [TBL] [Abstract][Full Text] [Related]
12. Non-covalent nano-adducts of co-poly(ester amide) and poly(ethylene glycol): preparation, characterization and model drug-release studies. Legashvili I; Nepharidze N; Katsarava R; Sannigrahi B; Khan IM J Biomater Sci Polym Ed; 2007; 18(6):673-85. PubMed ID: 17623550 [TBL] [Abstract][Full Text] [Related]
13. Nano-TiO2 reinforced PEEK/PEI blends as biomaterials for load-bearing implant applications. Díez-Pascual AM; Díez-Vicente AL ACS Appl Mater Interfaces; 2015 Mar; 7(9):5561-73. PubMed ID: 25706225 [TBL] [Abstract][Full Text] [Related]
14. Tuning of thermally induced sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid). Jin N; Zhang H; Jin S; Dadmun MD; Zhao B J Phys Chem B; 2012 Mar; 116(10):3125-37. PubMed ID: 22352399 [TBL] [Abstract][Full Text] [Related]
15. Ion-Conductive Properties of a Polymer Electrolyte Based on Ethylene Carbonate/Ethylene Oxide Random Copolymer. Morioka T; Nakano K; Tominaga Y Macromol Rapid Commun; 2017 Apr; 38(8):. PubMed ID: 28221711 [TBL] [Abstract][Full Text] [Related]
16. Polycaprolactone-poly(ethylene glycol) multiblock copolymers as potential substitutes for di(ethylhexyl) phthalate in flexible poly(vinyl chloride) formulations. Ferruti P; Mancin I; Ranucci E; De Felice C; Latini G; Laus M Biomacromolecules; 2003; 4(1):181-8. PubMed ID: 12523864 [TBL] [Abstract][Full Text] [Related]
17. Poly(carbonate-ester)s of dihydroxyacetone and lactic acid as potential biomaterials. Weiser JR; Zawaneh PN; Putnam D Biomacromolecules; 2011 Apr; 12(4):977-86. PubMed ID: 21401021 [TBL] [Abstract][Full Text] [Related]
18. Adjustable degradation and drug release of a thermosensitive hydrogel based on a pendant cyclic ether modified poly(ε-caprolactone) and poly(ethylene glycol)co-polymer. Wang W; Deng L; Liu S; Li X; Zhao X; Hu R; Zhang J; Han H; Dong A Acta Biomater; 2012 Nov; 8(11):3963-73. PubMed ID: 22835677 [TBL] [Abstract][Full Text] [Related]
19. Interaction of nonionic PEO-PPO diblock copolymers with lipid bilayers. Firestone MA; Seifert S Biomacromolecules; 2005; 6(5):2678-87. PubMed ID: 16153106 [TBL] [Abstract][Full Text] [Related]
20. Thermal properties and physicochemical behavior in aqueous solution of pyrene-labeled poly(ethylene glycol)-polylactide conjugate. Chen WL; Peng YF; Chiang SK; Huang MH Int J Nanomedicine; 2015; 10():2815-22. PubMed ID: 25914532 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]