These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Migdal-Kadanoff fixed point of the graded nonlinear sigma model for disordered single-particle systems without time-reversal symmetry. Zirnbauer MR Phys Rev Lett; 1988 Apr; 60(14):1450-1453. PubMed ID: 10038041 [No Abstract] [Full Text] [Related]
4. Emergent supersymmetry at the Ising-Berezinskii-Kosterlitz-Thouless multicritical point. Huijse L; Bauer B; Berg E Phys Rev Lett; 2015 Mar; 114(9):090404. PubMed ID: 25793787 [TBL] [Abstract][Full Text] [Related]
5. Analytical verification of scaling laws for the Ising model with external field in fractal lattices. Redinz JA Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):3399-401. PubMed ID: 11970157 [TBL] [Abstract][Full Text] [Related]
6. Temperature chaos, rejuvenation, and memory in Migdal-Kadanoff spin glasses. Sasaki M; Martin OC Phys Rev Lett; 2003 Aug; 91(9):097201. PubMed ID: 14525205 [TBL] [Abstract][Full Text] [Related]
7. Fixed-point distributions of short-range Ising spin glasses on hierarchical lattices. Almeida ST; Nobre FD Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032138. PubMed ID: 25871085 [TBL] [Abstract][Full Text] [Related]
8. Permanent quark confinement in four-dimensional hierarchical lattice gauge theories of Migdal-Kadanoff type. Ito KR Phys Rev Lett; 1985 Aug; 55(6):558-561. PubMed ID: 10032386 [No Abstract] [Full Text] [Related]
9. Correlated disordered interactions on Potts models. Muzy PT; Vieira AP; Salinas SR Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2A):046120. PubMed ID: 12005939 [TBL] [Abstract][Full Text] [Related]
10. Reexamination of the nonperturbative renormalization-group approach to the Kosterlitz-Thouless transition. Jakubczyk P; Dupuis N; Delamotte B Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062105. PubMed ID: 25615042 [TBL] [Abstract][Full Text] [Related]
11. Potential signature of a Kosterlitz-Thouless transition in BaNi2V2O8. Heinrich M; Krug von Nidda HA; Loidl A; Rogado N; Cava RJ Phys Rev Lett; 2003 Sep; 91(13):137601. PubMed ID: 14525336 [TBL] [Abstract][Full Text] [Related]
12. Localization and the Kosterlitz-Thouless transition in disordered graphene. Zhang YY; Hu J; Bernevig BA; Wang XR; Xie XC; Liu WM Phys Rev Lett; 2009 Mar; 102(10):106401. PubMed ID: 19392133 [TBL] [Abstract][Full Text] [Related]
13. Modified Migdal-Kadanoff renormalization for the Potts model. Chen HH; Lee F; Tseng HC Phys Rev B Condens Matter; 1986 Nov; 34(9):6448-6452. PubMed ID: 9940525 [No Abstract] [Full Text] [Related]
14. Preservation of the free energy in a Migdal-Kadanoff approximation for the spin-1/2 anisotropic Heisenberg model. Lee F; Chen HH; Tseng HC Phys Rev B Condens Matter; 1988 Apr; 37(10):5371-5374. PubMed ID: 9943720 [No Abstract] [Full Text] [Related]
15. Modified Migdal-Kadanoff renormalization for the spin-(1/2 anisotropic Heisenberg model. Lee F; Chen HH; Tseng HC Phys Rev B Condens Matter; 1988 Jul; 38(1):508-511. PubMed ID: 9945213 [No Abstract] [Full Text] [Related]
16. Migdal-Kadanoff study of the random-field Ising model. Cao MS; Machta J Phys Rev B Condens Matter; 1993 Aug; 48(5):3177-3182. PubMed ID: 10008741 [No Abstract] [Full Text] [Related]
17. Polymerization on the diamond hierarchical lattice: The Migdal-Kadanoff renormalization-group scheme. Kaufman M; Berger T; Gujrati PD; Bowman D Phys Rev A; 1990 Apr; 41(8):4371-4378. PubMed ID: 9903630 [No Abstract] [Full Text] [Related]
18. Dynamical real-space renormalization group calculations with a highly connected clustering scheme on disordered networks. Balcan D; Erzan A Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026130. PubMed ID: 15783401 [TBL] [Abstract][Full Text] [Related]
19. Transition-type change between an inverted Berezinskii-Kosterlitz-Thouless transition and an abrupt transition in bond percolation on a random hierarchical small-world network. Nogawa T; Hasegawa T Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042803. PubMed ID: 24827289 [TBL] [Abstract][Full Text] [Related]