These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 10032545)
1. Metamorphoses of basin boundaries in nonlinear dynamical systems. Grebogi C; Ott E; Yorke aJ Phys Rev Lett; 1986 Mar; 56(10):1011-1014. PubMed ID: 10032545 [No Abstract] [Full Text] [Related]
2. Dynamical formation of stable irregular transients in discontinuous map systems. Zou H; Guan S; Lai CH Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046214. PubMed ID: 19905422 [TBL] [Abstract][Full Text] [Related]
3. Chaos, strange attractors, and fractal basin boundaries in nonlinear dynamics. Grebogi C; Ott E; Yorke JA Science; 1987 Oct; 238(4827):632-8. PubMed ID: 17816542 [TBL] [Abstract][Full Text] [Related]
4. Fluctuational transitions across different kinds of fractal basin boundaries. Silchenko AN; Beri S; Luchinsky DG; McClintock PV Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046203. PubMed ID: 15903766 [TBL] [Abstract][Full Text] [Related]
5. Dominance of Milnor attractors in globally coupled dynamical systems with more than 7+/-2 degrees of freedom. Kaneko K Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):055201. PubMed ID: 12513544 [TBL] [Abstract][Full Text] [Related]
6. Catastrophic bifurcation from riddled to fractal basins. Lai YC; Andrade V Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056228. PubMed ID: 11736075 [TBL] [Abstract][Full Text] [Related]
7. Theory of hybrid dynamical systems and its applications to biological and medical systems. Aihara K; Suzuki H Philos Trans A Math Phys Eng Sci; 2010 Nov; 368(1930):4893-914. PubMed ID: 20921003 [TBL] [Abstract][Full Text] [Related]
8. Spatial and temporal structures in cavities with oscillating boundaries. Rosanov NN; Sochilin GB; Vinokurova VD; Vysotina NV Philos Trans A Math Phys Eng Sci; 2014 Oct; 372(2027):. PubMed ID: 25246682 [TBL] [Abstract][Full Text] [Related]
9. Dynamical movement primitives: learning attractor models for motor behaviors. Ijspeert AJ; Nakanishi J; Hoffmann H; Pastor P; Schaal S Neural Comput; 2013 Feb; 25(2):328-73. PubMed ID: 23148415 [TBL] [Abstract][Full Text] [Related]
10. Inference for nonlinear dynamical systems. Ionides EL; Bretó C; King AA Proc Natl Acad Sci U S A; 2006 Dec; 103(49):18438-43. PubMed ID: 17121996 [TBL] [Abstract][Full Text] [Related]
11. Doubly transient chaos: generic form of chaos in autonomous dissipative systems. Motter AE; Gruiz M; Károlyi G; Tél T Phys Rev Lett; 2013 Nov; 111(19):194101. PubMed ID: 24266475 [TBL] [Abstract][Full Text] [Related]
12. Phase-space transport of stochastic chaos in population dynamics of virus spread. Billings L; Bollt EM; Schwartz IB Phys Rev Lett; 2002 Jun; 88(23):234101. PubMed ID: 12059364 [TBL] [Abstract][Full Text] [Related]
13. Adjusting behavioral methods when applying nonlinear dynamical measures to stimulus rate. Frey BB Nonlinear Dynamics Psychol Life Sci; 2006 Apr; 10(2):241-73. PubMed ID: 16519867 [TBL] [Abstract][Full Text] [Related]
14. On the constructive role of noise in stabilizing itinerant trajectories in chaotic dynamical systems. Kozma R Chaos; 2003 Sep; 13(3):1078-89. PubMed ID: 12946201 [TBL] [Abstract][Full Text] [Related]
15. Basin boundaries and focal points in a map coming from Bairstow's method. Gardini L; Bischi GI; Fournier-Prunaret D Chaos; 1999 Jun; 9(2):367-380. PubMed ID: 12779835 [TBL] [Abstract][Full Text] [Related]
16. Observer-based adaptive fuzzy-neural control for unknown nonlinear dynamical systems. Leu YG; Lee TT; Wang WY IEEE Trans Syst Man Cybern B Cybern; 1999; 29(5):583-91. PubMed ID: 18252336 [TBL] [Abstract][Full Text] [Related]
17. Countable and uncountable boundaries in chaotic scattering. De Moura AP; Grebogi C Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046214. PubMed ID: 12443306 [TBL] [Abstract][Full Text] [Related]
18. A simple population model with qualitatively uncertain dynamics. Neubert MG J Theor Biol; 1997 Dec; 189(4):399-411. PubMed ID: 9446749 [TBL] [Abstract][Full Text] [Related]
19. A closed-loop identification protocol for nonlinear dynamical systems. Feng XJ; Rabitz H; Turinici G; Le Bris C J Phys Chem A; 2006 Jun; 110(25):7755-62. PubMed ID: 16789759 [TBL] [Abstract][Full Text] [Related]
20. Time series analyses of breathing patterns of lung cancer patients using nonlinear dynamical system theory. Tewatia DK; Tolakanahalli RP; Paliwal BR; Tomé WA Phys Med Biol; 2011 Apr; 56(7):2161-81. PubMed ID: 21389355 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]