These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 10033728)

  • 1. Thermal-equilibrium defect processes in hydrogenated amorphous silicon.
    Smith ZE; Aljishi S; Slobodin D; Chu V; Wagner S; Lenahan PM; Arya RR; Bennett MS
    Phys Rev Lett; 1986 Nov; 57(19):2450-2453. PubMed ID: 10033728
    [No Abstract]   [Full Text] [Related]  

  • 2. Thermal-equilibrium defects in undoped hydrogenated amorphous silicon, silicon-carbon, and silicon-nitrogen.
    Xu X; Sasaki H; Morimoto A; Kumeda M; Shimizu T
    Phys Rev B Condens Matter; 1990 May; 41(14):10049-10057. PubMed ID: 9993389
    [No Abstract]   [Full Text] [Related]  

  • 3. Direct role of hydrogen in the Staebler-Wronski effect in hydrogenated amorphous silicon.
    Su T; Taylor PC; Ganguly G; Carlson DE
    Phys Rev Lett; 2002 Jul; 89(1):015502. PubMed ID: 12097051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High thermal conductivity of a hydrogenated amorphous silicon film.
    Liu X; Feldman JL; Cahill DG; Crandall RS; Bernstein N; Photiadis DM; Mehl MJ; Papaconstantopoulos DA
    Phys Rev Lett; 2009 Jan; 102(3):035901. PubMed ID: 19257371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase stabilization by rapid thermal annealing in amorphous hydrogenated silicon nitride film.
    Singh SP; Srivastava P; Ghosh S; Khan SA; Vijaya Prakash G
    J Phys Condens Matter; 2009 Mar; 21(9):095010. PubMed ID: 21817383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal relaxation of the deposition-induced nonequilibrium state and steady-state defect density in hydrogenated amorphous silicon.
    Yoon JH; Lee YZ; Park HR
    Phys Rev B Condens Matter; 1994 Apr; 49(15):10303-10306. PubMed ID: 10009850
    [No Abstract]   [Full Text] [Related]  

  • 7. Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers.
    Mehta P; Healy N; Baril NF; Sazio PJ; Badding JV; Peacock AC
    Opt Express; 2010 Aug; 18(16):16826-31. PubMed ID: 20721074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoconductive analysis of defect density of hydrogenated amorphous silicon during room-temperature plasma posthydrogenation, light soaking, and thermal annealing.
    Conde JP; Gonçalves M; Brogueira P; Schotten V; Chu V
    Phys Rev B Condens Matter; 1996 Jan; 53(4):1886-1890. PubMed ID: 9983647
    [No Abstract]   [Full Text] [Related]  

  • 9. Measured and calculated distributions of deep defect states in hydrogenated amorphous silicon: Verification of deep defect relaxation dynamics.
    Zhong F; Cohen JD
    Phys Rev Lett; 1993 Jul; 71(4):597-600. PubMed ID: 10055316
    [No Abstract]   [Full Text] [Related]  

  • 10. Determination of recombination coefficients for nanocrystalline silicon embedded in hydrogenated amorphous silicon.
    He W; Zakar A; Roger T; Yurkevich IV; Kaplan A
    Opt Lett; 2015 Aug; 40(16):3889-92. PubMed ID: 26274686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling amorphous silicon with hydrogenated defects: GW treatment of the ST12 phase.
    Fisker C; Trolle ML; Pedersen TG
    J Phys Condens Matter; 2012 Aug; 24(32):325803, 1-6. PubMed ID: 22785043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of correlated photons in hydrogenated amorphous-silicon waveguides.
    Clemmen S; Perret A; Selvaraja SK; Bogaerts W; van Thourhout D; Baets R; Emplit P; Massar S
    Opt Lett; 2010 Oct; 35(20):3483-5. PubMed ID: 20967107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Band tails, entropy, and equilibrium defects in hydrogenated amorphous silicon.
    Smith ZE; Wagner S
    Phys Rev Lett; 1987 Aug; 59(6):688-691. PubMed ID: 10035845
    [No Abstract]   [Full Text] [Related]  

  • 14. Thermal equilibration of surface defects in hydrogenated amorphous silicon-germanium alloys.
    Aljishi S; Jin S; Ley L; Wagner S
    Phys Rev Lett; 1990 Jul; 65(5):629-632. PubMed ID: 10042972
    [No Abstract]   [Full Text] [Related]  

  • 15. Pattern-effect-free all-optical wavelength conversion using a hydrogenated amorphous silicon waveguide with ultra-fast carrier decay.
    Suda S; Tanizawa K; Sakakibara Y; Kamei T; Nakanishi K; Itoga E; Ogasawara T; Takei R; Kawashima H; Namiki S; Mori M; Hasama T; Ishikawa H
    Opt Lett; 2012 Apr; 37(8):1382-4. PubMed ID: 22513693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative approach to computing transport coefficients: application to conductivity and Hall coefficient of hydrogenated amorphous silicon.
    Zhang ML; Drabold DA
    Phys Rev Lett; 2010 Oct; 105(18):186602. PubMed ID: 21231124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides.
    Wang KY; Foster AC
    Opt Lett; 2012 Apr; 37(8):1331-3. PubMed ID: 22513676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators.
    Pelc JS; Rivoire K; Vo S; Santori C; Fattal DA; Beausoleil RG
    Opt Express; 2014 Feb; 22(4):3797-810. PubMed ID: 24663700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ thickness control during plasma deposition of hydrogenated amorphous silicon films by time-resolved microwave conductivity measurements.
    Neitzert HC; Hirsch W; Kunst M; Nell ME
    Appl Opt; 1995 Feb; 34(4):676-80. PubMed ID: 20963168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide.
    Shoji Y; Ogasawara T; Kamei T; Sakakibara Y; Suda S; Kintaka K; Kawashima H; Okano M; Hasama T; Ishikawa H; Mori M
    Opt Express; 2010 Mar; 18(6):5668-73. PubMed ID: 20389582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.