These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 100340)

  • 1. Possible explanation for interictal-ictal transition: evolution of epileptiform activity in hippocampal slice by chloride depletion.
    Ogata N
    Experientia; 1978 Aug; 34(8):1035-6. PubMed ID: 100340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloride-cotransport blockade desynchronizes neuronal discharge in the "epileptic" hippocampal slice.
    Hochman DW; Schwartzkroin PA
    J Neurophysiol; 2000 Jan; 83(1):406-17. PubMed ID: 10634883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Propagation dynamics of epileptiform activity acutely induced by bicuculline in the hippocampal-parahippocampal region of the isolated Guinea pig brain.
    Uva L; Librizzi L; Wendling F; de Curtis M
    Epilepsia; 2005 Dec; 46(12):1914-25. PubMed ID: 16393157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The epileptic human hippocampal cornu ammonis 2 region generates spontaneous interictal-like activity in vitro.
    Wittner L; Huberfeld G; Clémenceau S; Eross L; Dezamis E; Entz L; Ulbert I; Baulac M; Freund TF; Maglóczky Z; Miles R
    Brain; 2009 Nov; 132(Pt 11):3032-46. PubMed ID: 19767413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interictal-ictal interactions and limbic seizure generation.
    Avoli M; Barbarosie M
    Rev Neurol (Paris); 1999 Jul; 155(6-7):468-71. PubMed ID: 10472661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous interictal-like activity originates in multiple areas of the CA2-CA3 region of hippocampal slices.
    Colom LV; Saggau P
    J Neurophysiol; 1994 Apr; 71(4):1574-85. PubMed ID: 8035236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ictal epileptiform activity in the CA3 region of hippocampal slices produced by pilocarpine.
    Rutecki PA; Yang Y
    J Neurophysiol; 1998 Jun; 79(6):3019-29. PubMed ID: 9636105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifocal spontaneous epileptic activity induced by restricted bicuculline ejection in the piriform cortex of the isolated guinea pig brain.
    De Curtis M; Biella G; Forti M; Panzica F
    J Neurophysiol; 1994 Jun; 71(6):2463-76. PubMed ID: 7931528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epileptiform ictal discharges are prevented by periodic interictal spiking in the olfactory cortex.
    Librizzi L; de Curtis M
    Ann Neurol; 2003 Mar; 53(3):382-9. PubMed ID: 12601706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of intrinsic burst firing, potassium accumulation, and electrical coupling in the elevated potassium model of hippocampal epilepsy.
    Jensen MS; Yaari Y
    J Neurophysiol; 1997 Mar; 77(3):1224-33. PubMed ID: 9084592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice.
    Traynelis SF; Dingledine R
    J Neurophysiol; 1988 Jan; 59(1):259-76. PubMed ID: 3343603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular free potassium and calcium during synchronous activity induced by 4-aminopyridine in the juvenile rat hippocampus.
    Avoli M; Louvel J; Kurcewicz I; Pumain R; Barbarosie M
    J Physiol; 1996 Jun; 493 ( Pt 3)(Pt 3):707-17. PubMed ID: 8799893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-duration self-sustained epileptiform activity in the hippocampal-parahippocampal slice: a model of status epilepticus.
    Rafiq A; Zhang YF; DeLorenzo RJ; Coulter DA
    J Neurophysiol; 1995 Nov; 74(5):2028-42. PubMed ID: 8592194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epileptiform activity induced by changes in extracellular potassium in hippocampus.
    Rutecki PA; Lebeda FJ; Johnston D
    J Neurophysiol; 1985 Nov; 54(5):1363-74. PubMed ID: 2416891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relationship between interictal and ictal paroxysms in an in vitro model of focal hippocampal epilepsy.
    Jensen MS; Yaari Y
    Ann Neurol; 1988 Nov; 24(5):591-8. PubMed ID: 2849367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seizure-like events in brain slices: suppression by interictal activity.
    Swartzwelder HS; Lewis DV; Anderson WW; Wilson WA
    Brain Res; 1987 May; 410(2):362-6. PubMed ID: 3594246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic epileptic foci in vitro in hippocampal slices from rats with the tetanus toxin epileptic syndrome.
    Jefferys JG
    J Neurophysiol; 1989 Aug; 62(2):458-68. PubMed ID: 2504891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repeated tetanic stimulation in piriform cortex in vitro: epileptogenesis and pharmacology.
    Pelletier MR; Carlen PL
    J Neurophysiol; 1996 Dec; 76(6):4069-79. PubMed ID: 8985901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid plasticity at inhibitory and excitatory synapses in the hippocampus induced by ictal epileptiform discharges.
    Lopantsev V; Both M; Draguhn A
    Eur J Neurosci; 2009 Mar; 29(6):1153-64. PubMed ID: 19302151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CA3-released entorhinal seizures disclose dentate gyrus epileptogenicity and unmask a temporoammonic pathway.
    Barbarosie M; Louvel J; Kurcewicz I; Avoli M
    J Neurophysiol; 2000 Mar; 83(3):1115-24. PubMed ID: 10712442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.