These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 10036148)

  • 1. Identification of serine esterases in tissue homogenates.
    Keshavarz-Shokri A; Suntornwat O; Kitos PA
    Anal Biochem; 1999 Feb; 267(2):406-11. PubMed ID: 10036148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ontogenetic differences in the regional and cellular acetylcholinesterase and butyrylcholinesterase activity in the rat brain.
    Lassiter TL; Barone S; Padilla S
    Brain Res Dev Brain Res; 1998 Jan; 105(1):109-23. PubMed ID: 9497085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The aryl acylamidase activity is much more sensitive to Alzheimer drugs than the esterase activity of acetylcholinesterase in chicken embryonic brain.
    Rajesh RV; Chitra L; Layer PG; Boopathy R
    Biochimie; 2009 Sep; 91(9):1087-94. PubMed ID: 19607873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protease activity in gut of Daphnia magna: evidence for trypsin and chymotrypsin enzymes.
    von Elert E; Agrawal MK; Gebauer C; Jaensch H; Bauer U; Zitt A
    Comp Biochem Physiol B Biochem Mol Biol; 2004 Mar; 137(3):287-96. PubMed ID: 15050516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Butyrylcholinesterase, paraoxonase, and albumin esterase, but not carboxylesterase, are present in human plasma.
    Li B; Sedlacek M; Manoharan I; Boopathy R; Duysen EG; Masson P; Lockridge O
    Biochem Pharmacol; 2005 Nov; 70(11):1673-84. PubMed ID: 16213467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholinesterase inhibitors modify the activity of intrinsic cardiac neurons.
    Darvesh S; Arora RC; Martin E; Magee D; Hopkins DA; Armour JA
    Exp Neurol; 2004 Aug; 188(2):461-70. PubMed ID: 15246845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of aging of mipafox-inhibited butyrylcholinesterase.
    Kropp TJ; Richardson RJ
    Chem Res Toxicol; 2007 Mar; 20(3):504-10. PubMed ID: 17323978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The nature of differences in amidase and esterase activities of some acyltrypsins].
    Bresler SE
    Biokhimiia; 1975; 40(2):408-10. PubMed ID: 1203361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential distribution of butyrylcholinesterase and acetylcholinesterase in the human thalamus.
    Darvesh S; Hopkins DA
    J Comp Neurol; 2003 Aug; 463(1):25-43. PubMed ID: 12811800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ontogenetic differences in the regional and cellular acetylcholinesterase and butyrylcholinesterase activity in the rat brain.
    Lassiter TL; Barone S; Padilla S
    Brain Res Dev Brain Res; 1998 Jan; 105(1):109-23. PubMed ID: 9473617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition and labeling of enzymes and abzymes by phosphonate diesters.
    Tramontano A; Ivanov B; Gololobov G; Paul S
    Appl Biochem Biotechnol; 2000; 83(1-3):233-42; discussion 242-3, 297-313. PubMed ID: 10826963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aging of mipafox-inhibited human acetylcholinesterase proceeds by displacement of both isopropylamine groups to yield a phosphate adduct.
    Kropp TJ; Richardson RJ
    Chem Res Toxicol; 2006 Feb; 19(2):334-9. PubMed ID: 16485911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a trypsin-like site associated with acetylcholinesterase by affinity labelling with [3H]diisopropyl fluorophosphate.
    Small DH; Chubb IW
    J Neurochem; 1988 Jul; 51(1):69-74. PubMed ID: 3379413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition and recovery of maternal and fetal cholinesterase enzymes following a single oral dose of chlorpyrifos in rats.
    Ashry KM; Abu-Qare AW; Saleem FR; Hussein YA; Hamza SM; Kishk AM; Abou-Donia MB
    Arch Toxicol; 2002 Feb; 76(1):30-9. PubMed ID: 11875622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of chlorambucil on proteases and esterases.
    Brecher AS
    Arch Int Pharmacodyn Ther; 1966 Jul; 162(1):186-93. PubMed ID: 5338604
    [No Abstract]   [Full Text] [Related]  

  • 16. Kinetics and specificity of serine proteases in peptide synthesis catalyzed in organic solvents.
    Gaertner H; Puigserver A
    Eur J Biochem; 1989 Apr; 181(1):207-13. PubMed ID: 2653820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of Triton X-100 with acyl pocket of butyrylcholinesterase: effect on esterase activity and inhibitor sensitivity of the enzyme.
    Jaganathan L; Boopathy R
    Indian J Biochem Biophys; 1998 Jun; 35(3):142-7. PubMed ID: 9803662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Butyrylcholinesterase-Mediated enhancement of the enzymatic activity of trypsin.
    Darvesh S; Kumar R; Roberts S; Walsh R; Martin E
    Cell Mol Neurobiol; 2001 Jun; 21(3):285-96. PubMed ID: 11569538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The quaternary structure of chicken acetylcholinesterase and butyrylcholinesterase; effect of collagenase and trypsin.
    Allemand P; Bon S; Massoulié J; Vigny M
    J Neurochem; 1981 Mar; 36(3):860-7. PubMed ID: 6259292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topographical differences of carboxylic esterases in the rhombencephalon and mesencephalon of the turtle (Lissemys punctata granosa).
    Sood PP; Khan AH
    J Hirnforsch; 1984; 25(5):559-67. PubMed ID: 6501870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.