BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 10036203)

  • 1. Theoretical evaluation of a model of the catalytic triads of serine and cysteine proteases by ab initio molecular orbital calculation.
    Nishihira J; Tachikawa H
    J Theor Biol; 1999 Feb; 196(4):513-9. PubMed ID: 10036203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Asp102 in the catalytic relay system of serine proteases: a theoretical study.
    Ishida T; Kato S
    J Am Chem Soc; 2004 Jun; 126(22):7111-8. PubMed ID: 15174882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A theoretical study of the active sites of papain and S195C rat trypsin: implications for the low reactivity of mutant serine proteinases.
    Beveridge AJ
    Protein Sci; 1996 Jul; 5(7):1355-65. PubMed ID: 8819168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab initio model study on acetylcholinesterase catalysis: potential energy surfaces of the proton transfer reactions.
    Tachikawa H; Igarashi M; Nishihira J; Ishibashi T
    J Photochem Photobiol B; 2005 Apr; 79(1):11-23. PubMed ID: 15792875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Quantum chemical study of the "catalytic triad" of serine proteases].
    Voĭtiuk AA; Vasil'ev VV
    Mol Biol (Mosk); 1987; 21(3):807-13. PubMed ID: 3477691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantumchemical study of the catalytic triad in subtilisin: the influence of amino acid substitutions on enzymatic activity.
    Baeten A; Maes D; Geerlings P
    J Theor Biol; 1998 Nov; 195(1):27-40. PubMed ID: 9802948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical perspectives on the reaction mechanism of serine proteases: the reaction free energy profiles of the acylation process.
    Ishida T; Kato S
    J Am Chem Soc; 2003 Oct; 125(39):12035-48. PubMed ID: 14505425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of serine proteases derived from steric comparisons of their active sites, part II: "Ser, His, Asp arrangements in proteolytic and nonproteolytic proteins".
    Barth A; Frost K; Wahab M; Brandt W; Schadler HD; Franke R
    Drug Des Discov; 1994 Nov; 12(2):89-111. PubMed ID: 9116171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model study of the efficiency of the Asp-His-Ser triad.
    Lankau T; Yu CH
    J Comput Chem; 2010 Jul; 31(9):1853-9. PubMed ID: 20082386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The low barrier hydrogen bond (LBHB) proposal revisited: the case of the Asp... His pair in serine proteases.
    Schutz CN; Warshel A
    Proteins; 2004 May; 55(3):711-23. PubMed ID: 15103633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The electrostatic driving force for nucleophilic catalysis in L-arginine deiminase: a combined experimental and theoretical study.
    Li L; Li Z; Wang C; Xu D; Mariano PS; Guo H; Dunaway-Mariano D
    Biochemistry; 2008 Apr; 47(16):4721-32. PubMed ID: 18366187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the mechanism of hamster arylamine N-acetyltransferase 2 acetylation by active site modification, site-directed mutagenesis, and pre-steady state and steady state kinetic studies.
    Wang H; Vath GM; Gleason KJ; Hanna PE; Wagner CR
    Biochemistry; 2004 Jun; 43(25):8234-46. PubMed ID: 15209520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recognition of active and inactive catalytic triads: A template based approach.
    Gupta V; Prakash NA; Lakshmi V; Boopathy R; Jeyakanthan J; Velmurugan D; Sekar K
    Int J Biol Macromol; 2010 Apr; 46(3):317-23. PubMed ID: 20100510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical studies on the deacylation step of serine protease catalysis in the gas phase, in solution, and in elastase.
    Topf M; Richards WG
    J Am Chem Soc; 2004 Nov; 126(44):14631-41. PubMed ID: 15521783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic mechanism of SHCHC synthase in the menaquinone biosynthesis of Escherichia coli: identification and mutational analysis of the active site residues.
    Jiang M; Chen X; Wu XH; Chen M; Wu YD; Guo Z
    Biochemistry; 2009 Jul; 48(29):6921-31. PubMed ID: 19545176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of catalytic mechanism of serine proteases. Viability of the ring-flip hypothesis.
    Scheiner S
    J Phys Chem B; 2008 Jun; 112(22):6837-46. PubMed ID: 18461994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a serine protease-like catalytic triad on an antibody light chain displayed on the yeast cell surface.
    Okochi N; Kato-Murai M; Kadonosono T; Ueda M
    Appl Microbiol Biotechnol; 2007 Dec; 77(3):597-603. PubMed ID: 17899065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Quantum chemistry analysis of the mechanism of action of proteolytic enzymes. III. Proton transport in serine proteases].
    Aleksandrov SL; Antonov VK
    Mol Biol (Mosk); 1987; 21(1):147-58. PubMed ID: 3033472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The importance of the active site histidine for the activity of epoxide- or aziridine-based inhibitors of cysteine proteases.
    Mladenovic M; Schirmeister T; Thiel S; Thiel W; Engels B
    ChemMedChem; 2007 Jan; 2(1):120-8. PubMed ID: 17066390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A self-stabilized model of the chymotrypsin catalytic pocket. The energy profile of the overall catalytic cycle.
    Hudáky P; Perczel A
    Proteins; 2006 Mar; 62(3):749-59. PubMed ID: 16358328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.