These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 10036210)

  • 1. Numerical simulation of motility patterns of the small bowel. 1. formulation of a mathematical model.
    Miftakhov RN; Abdusheva GR; Christensen J
    J Theor Biol; 1999 Mar; 197(1):89-112. PubMed ID: 10036210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical simulation of excitation-contraction coupling in a locus of the small bowel.
    Miftakhov RN; Abdusheva GR
    Biol Cybern; 1996 May; 74(5):455-67. PubMed ID: 8991461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model predictions of myoelectrical activity of the small bowel.
    Miftakhov RN; Abdusheva GR; Wingate DL
    Biol Cybern; 1996 Feb; 74(2):167-79. PubMed ID: 8634368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescent molecules as tools to study Ca2+ signaling, mitochondrial dynamics and synaptic function in enteric neurons.
    Vanden Berghe P
    Verh K Acad Geneeskd Belg; 2004; 66(5-6):407-25. PubMed ID: 15641568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical simulation of motility patterns of the small bowel. II. Comparative pharmacological validation of a mathematical model.
    Miftakhov RN; Abdusheva GR; Christensen J
    J Theor Biol; 1999 Oct; 200(3):261-90. PubMed ID: 10527717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The enteric nervous system and regulation of intestinal motility.
    Kunze WA; Furness JB
    Annu Rev Physiol; 1999; 61():117-42. PubMed ID: 10099684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational model of the migrating motor complex of the small intestine.
    Thomas EA; Sjövall H; Bornstein JC
    Am J Physiol Gastrointest Liver Physiol; 2004 Apr; 286(4):G564-72. PubMed ID: 14630643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into mechanisms of intestinal segmentation in guinea pigs: a combined computational modeling and in vitro study.
    Chambers JD; Bornstein JC; Thomas EA
    Am J Physiol Gastrointest Liver Physiol; 2008 Sep; 295(3):G534-41. PubMed ID: 18599585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mathematical model of Ca2+ dynamics in rat mesenteric smooth muscle cell: agonist and NO stimulation.
    Kapela A; Bezerianos A; Tsoukias NM
    J Theor Biol; 2008 Jul; 253(2):238-60. PubMed ID: 18423672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Architecture of enteric neural circuits involved in intestinal motility.
    Costa M; Brookes SH
    Eur Rev Med Pharmacol Sci; 2008 Aug; 12 Suppl 1():3-19. PubMed ID: 18924440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical activity of the sensory afferent pathway in the enteric nervous system.
    Miftakhov RN; Wingate DL
    Biol Cybern; 1996 Dec; 75(6):471-83. PubMed ID: 9008351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Platelet-activating factor in the enteric nervous system of the guinea pig small intestine.
    Wang GD; Wang XY; Hu HZ; Fang XC; Liu S; Gao N; Xia Y
    Am J Physiol Gastrointest Liver Physiol; 2006 Nov; 291(5):G928-37. PubMed ID: 17030900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping 5-HT inputs to enteric neurons of the guinea-pig small intestine.
    Neal KB; Bornstein JC
    Neuroscience; 2007 Mar; 145(2):556-67. PubMed ID: 17261354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual purinergic synaptic transmission in the human enteric nervous system.
    Wunderlich JE; Needleman BJ; Chen Z; Yu JG; Wang Y; Grants I; Mikami DJ; Melvin WS; Cooke HJ; Christofi FL
    Am J Physiol Gastrointest Liver Physiol; 2008 Feb; 294(2):G554-66. PubMed ID: 18079280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic primary afferent neurons and nerve circuits within the intestine.
    Furness JB; Jones C; Nurgali K; Clerc N
    Prog Neurobiol; 2004 Feb; 72(2):143-64. PubMed ID: 15063530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium imaging of gut activity.
    Tack J; Smith TK
    Neurogastroenterol Motil; 2004 Apr; 16 Suppl 1():86-95. PubMed ID: 15066011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRF-induced calcium signaling in guinea pig small intestine myenteric neurons involves CRF-1 receptors and activation of voltage-sensitive calcium channels.
    Bisschops R; Vanden Berghe P; Sarnelli G; Janssens J; Tack J
    Am J Physiol Gastrointest Liver Physiol; 2006 Jun; 290(6):G1252-60. PubMed ID: 16384874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurochemical bases of visceral nociception: mathematical model.
    Miftahof R; Akhmadeev NR
    J Theor Biol; 2007 Nov; 249(2):343-60. PubMed ID: 17826799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of interstitial cells of Cajal in neural control of gastrointestinal smooth muscles.
    Ward SM; Sanders KM; Hirst GD
    Neurogastroenterol Motil; 2004 Apr; 16 Suppl 1():112-7. PubMed ID: 15066015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whole cell stochastic model reproduces the irregularities found in the membrane potential of bursting neurons.
    Carelli PV; Reyes MB; Sartorelli JC; Pinto RD
    J Neurophysiol; 2005 Aug; 94(2):1169-79. PubMed ID: 15800078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.