These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 10036284)

  • 1. Neuronal activity in somatosensory cortex of monkeys using a precision grip. II. Responses To object texture and weights.
    Salimi I; Brochier T; Smith AM
    J Neurophysiol; 1999 Feb; 81(2):835-44. PubMed ID: 10036284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal activity in somatosensory cortex of monkeys using a precision grip. III. Responses to altered friction perturbations.
    Salimi I; Brochier T; Smith AM
    J Neurophysiol; 1999 Feb; 81(2):845-57. PubMed ID: 10036285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Primary motor cortical activity related to the weight and texture of grasped objects in the monkey.
    Picard N; Smith AM
    J Neurophysiol; 1992 Nov; 68(5):1867-81. PubMed ID: 1479450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronal activity in somatosensory cortex of monkeys using a precision grip. I. Receptive fields and discharge patterns.
    Salimi I; Brochier T; Smith AM
    J Neurophysiol; 1999 Feb; 81(2):825-34. PubMed ID: 10036283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purkinje cell simple spike activity during grasping and lifting objects of different textures and weights.
    Espinoza E; Smith AM
    J Neurophysiol; 1990 Sep; 64(3):698-714. PubMed ID: 2230918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical mechanisms underlying tactile discrimination in the monkey. I. Role of primary somatosensory cortex in passive texture discrimination.
    Tremblay F; Ageranioti-Bélanger SA; Chapman CE
    J Neurophysiol; 1996 Nov; 76(5):3382-403. PubMed ID: 8930280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary motor cortical responses to perturbations of prehension in the monkey.
    Picard N; Smith AM
    J Neurophysiol; 1992 Nov; 68(5):1882-94. PubMed ID: 1479451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the neuronal activity in the SMA and the ventral cingulate cortex during prehension in the monkey.
    Cadoret G; Smith AM
    J Neurophysiol; 1997 Jan; 77(1):153-66. PubMed ID: 9120556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses of cerebellar Purkinje cells to slip of a hand-held object.
    Dugas C; Smith AM
    J Neurophysiol; 1992 Mar; 67(3):483-95. PubMed ID: 1578241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity in ventral and dorsal premotor cortex in response to predictable force-pulse perturbations in a precision grip task.
    Boudreau MJ; Brochier T; Paré M; Smith AM
    J Neurophysiol; 2001 Sep; 86(3):1067-78. PubMed ID: 11535657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity in rostral motor cortex in response to predictable force-pulse perturbations in a precision grip task.
    Boudreau MJ; Smith AM
    J Neurophysiol; 2001 Sep; 86(3):1079-85. PubMed ID: 11535658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contrasting properties of monkey somatosensory and motor cortex neurons activated during the control of force in precision grip.
    Wannier TM; Maier MA; Hepp-Reymond MC
    J Neurophysiol; 1991 Mar; 65(3):572-89. PubMed ID: 2051196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of muscimol inactivation of small regions of motor and somatosensory cortex on independent finger movements and force control in the precision grip.
    Brochier T; Boudreau MJ; Paré M; Smith AM
    Exp Brain Res; 1999 Sep; 128(1-2):31-40. PubMed ID: 10473737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of grip force during restraint of an object held between finger and thumb: responses of cutaneous afferents from the digits.
    Macefield VG; Häger-Ross C; Johansson RS
    Exp Brain Res; 1996 Feb; 108(1):155-71. PubMed ID: 8721164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Friction, not texture, dictates grip forces used during object manipulation.
    Cadoret G; Smith AM
    J Neurophysiol; 1996 May; 75(5):1963-9. PubMed ID: 8734595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responses of cerebellar interpositus neurons to predictable perturbations applied to an object held in a precision grip.
    Monzée J; Smith AM
    J Neurophysiol; 2004 Mar; 91(3):1230-9. PubMed ID: 14681334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of neuronal firing rates in somatosensory and posterior parietal cortex during prehension.
    Debowy DJ; Ghosh S; Ro JY; Gardner EP
    Exp Brain Res; 2001 Apr; 137(3-4):269-91. PubMed ID: 11355375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discharge properties of neurones in the hand area of primary somatosensory cortex in monkeys in relation to the performance of an active tactile discrimination task. II. Area 2 as compared to areas 3b and 1.
    Ageranioti-Bélanger SA; Chapman CE
    Exp Brain Res; 1992; 91(2):207-28. PubMed ID: 1459224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discharge properties of neurones in the hand area of primary somatosensory cortex in monkeys in relation to the performance of an active tactile discrimination task. I. Areas 3b and 1.
    Chapman CE; Ageranioti-Bélanger SA
    Exp Brain Res; 1991; 87(2):319-39. PubMed ID: 1769386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probabilistic information on object weight shapes force dynamics in a grip-lift task.
    Trampenau L; Kuhtz-Buschbeck JP; van Eimeren T
    Exp Brain Res; 2015 Jun; 233(6):1711-20. PubMed ID: 25761969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.