These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 10037352)

  • 41. In vitro investigation on Ho:YAG laser-assisted bone ablation underwater.
    Zhang X; Chen C; Chen F; Zhan Z; Xie S; Ye Q
    Lasers Med Sci; 2016 Jul; 31(5):891-8. PubMed ID: 27056700
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Potential use of holmium lasers for angioplasty: evaluation of a new solid-state laser for ablation of atherosclerotic plaque.
    Haase KK; Baumbach A; Wehrmann M; Duda S; Cerullo G; Rückle B; Steiger E; Karsch KR
    Lasers Surg Med; 1991; 11(3):232-7. PubMed ID: 1861562
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mid-IR laser ablation of articular and fibro-cartilage: a wavelength dependence study of thermal injury and crater morphology.
    Youn JI; Sweet P; Peavy GM; Venugopalan V
    Lasers Surg Med; 2006 Mar; 38(3):218-28. PubMed ID: 16453331
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of heterogeneous absorption of laser radiation in biotissue ablation: characterization of ablation of fat with a pulsed CO2 laser.
    Ross EV; Domankevitz Y; Anderson RR
    Lasers Surg Med; 1997; 21(1):59-64. PubMed ID: 9228641
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sequential 3D X-ray microtomographic measurement of enamel and dentine ablation by an Er:YAG laser.
    Mercer CE; Anderson P; Davis GR
    Br Dent J; 2003 Jan; 194(2):99-104; discussion 89. PubMed ID: 12577078
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dissolution studies of bovine dental enamel surfaces modified by high-speed scanning ablation with a lambda = 9.3-microm TEA CO(2) laser.
    Fried D; Featherstone JD; Le CQ; Fan K
    Lasers Surg Med; 2006 Oct; 38(9):837-45. PubMed ID: 17044095
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Morphological and atomic analytical changes after CO2 laser irradiation emitted at 9.3 microns on human dental hard tissues.
    Takahashi K; Kimura Y; Matsumoto K
    J Clin Laser Med Surg; 1998 Jun; 16(3):167-73. PubMed ID: 9743655
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Peripheral thermal and mechanical damage to dentin with microsecond and sub-microsecond 9.6 microm, 2.79 microm, and 0.355 microm laser pulses.
    Dela Rosa A; Sarma AV; Le CQ; Jones RS; Fried D
    Lasers Surg Med; 2004; 35(3):214-28. PubMed ID: 15389737
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of water flow on dental hard tissue ablation using Er:YAG laser.
    Kim ME; Jeoung DJ; Kim KS
    J Clin Laser Med Surg; 2003 Jun; 21(3):139-44. PubMed ID: 12828848
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Studies of acoustical and shock waves in the pulsed laser ablation of biotissue.
    Esenaliev RO; Oraevsky AA; Letokhov VS; Karabutov AA; Malinsky TV
    Lasers Surg Med; 1993; 13(4):470-84. PubMed ID: 8366748
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Photoablation of gelatin with the free-electron laser between 2.7 and 6.7 microns.
    Jean B; Bende T
    J Refract Corneal Surg; 1994; 10(4):433-8. PubMed ID: 7528615
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Laser selective cutting of biological tissues by impulsive heat deposition through ultrafast vibrational excitations.
    Franjic K; Cowan ML; Kraemer D; Miller RJ
    Opt Express; 2009 Dec; 17(25):22937-59. PubMed ID: 20052221
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Assessment of Er:YAG laser for cavity preparation in primary and permanent teeth: a scanning electron microscopy and thermographic study.
    Al-Batayneh OB; Seow WK; Walsh LJ
    Pediatr Dent; 2014; 36(3):90-4. PubMed ID: 24960377
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Myocardium tissue ablation with high-peak-power nanosecond 1,064- and 532-nm pulsed lasers: influence of laser-induced plasma.
    Ogura M; Sato S; Ishihara M; Kawauchi S; Arai T; Matsui T; Kurita A; Kikuchi M; Ashida H; Obara M
    Lasers Surg Med; 2002; 31(2):136-41. PubMed ID: 12210598
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Soft and hard tissue ablation with short-pulse high peak power and continuous thulium-silica fibre lasers.
    El-Sherif AF; King TA
    Lasers Med Sci; 2003; 18(3):139-47. PubMed ID: 14505197
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Numerical analysis of laser ablation and damage in glass with multiple picosecond laser pulses.
    Sun M; Eppelt U; Russ S; Hartmann C; Siebert C; Zhu J; Schulz W
    Opt Express; 2013 Apr; 21(7):7858-67. PubMed ID: 23571876
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Surface plasmon assisted laser ablation of stainless steel.
    Lu L; Tan R; Chen D; Tong Y; Yan X; Gong M; Wu JZ
    Nanotechnology; 2019 Jul; 30(30):305401. PubMed ID: 30970328
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ablation depths and morphological changes in human enamel and dentin after Er:YAG laser irradiation with or without water mist.
    Hossain M; Nakamura Y; Yamada Y; Kimura Y; Nakamura G; Matsumoto K
    J Clin Laser Med Surg; 1999 Jun; 17(3):105-9. PubMed ID: 11199828
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Histologic effect of a variable pulsed Er:YAG laser.
    Pozner JM; Goldberg DJ
    Dermatol Surg; 2000 Aug; 26(8):733-6. PubMed ID: 10940058
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Why wavelength and delivery systems are the most important factors in using a dental hard-tissue laser: a literature review.
    Bornstein ES
    Compend Contin Educ Dent; 2003 Nov; 24(11):837-8, 841, 843 passim; quiz 848. PubMed ID: 18624131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.