BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 10037445)

  • 1. N-domain selectivity of angiotensin I-converting enzyme as assessed by structure-function studies of its highly selective substrate, N-acetyl-seryl-aspartyl-lysyl-proline.
    Michaud A; Chauvet MT; Corvol P
    Biochem Pharmacol; 1999 Mar; 57(6):611-8. PubMed ID: 10037445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Angiotensin I-converting enzyme and metabolism of the haematological peptide N-acetyl-seryl-aspartyl-lysyl-proline.
    Azizi M; Junot C; Ezan E; Ménard J
    Clin Exp Pharmacol Physiol; 2001 Dec; 28(12):1066-9. PubMed ID: 11903317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate dependence of angiotensin I-converting enzyme inhibition: captopril displays a partial selectivity for inhibition of N-acetyl-seryl-aspartyl-lysyl-proline hydrolysis compared with that of angiotensin I.
    Michaud A; Williams TA; Chauvet MT; Corvol P
    Mol Pharmacol; 1997 Jun; 51(6):1070-6. PubMed ID: 9187274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The hemoregulatory peptide N-acetyl-Ser-Asp-Lys-Pro is a natural and specific substrate of the N-terminal active site of human angiotensin-converting enzyme.
    Rousseau A; Michaud A; Chauvet MT; Lenfant M; Corvol P
    J Biol Chem; 1995 Feb; 270(8):3656-61. PubMed ID: 7876104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of angiotensin converting enzyme mutations on the kinetics and dynamics of N-domain selective inhibition.
    Lubbe L; Sewell BT; Sturrock ED
    FEBS J; 2016 Nov; 283(21):3941-3961. PubMed ID: 27636235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for the negative cooperativity of the two active sites within bovine somatic angiotensin-converting enzyme.
    Binevski PV; Sizova EA; Pozdnev VF; Kost OA
    FEBS Lett; 2003 Aug; 550(1-3):84-8. PubMed ID: 12935891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of human plasma angiotensin I-converting enzyme in the degradation of the haemoregulatory peptide N-acetyl-seryl-aspartyl-lysyl-proline.
    Rieger KJ; Saez-Servent N; Papet MP; Wdzieczak-Bakala J; Morgat JL; Thierry J; Voelter W; Lenfant M
    Biochem J; 1993 Dec; 296 ( Pt 2)(Pt 2):373-8. PubMed ID: 8257427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catabolism of the hemoregulatory peptide N-Acetyl-Ser-Asp-Lys-Pro: a new insight into the physiological role of the angiotensin-I-converting enzyme N-active site.
    Rousseau-Plasse A; Lenfant M; Potier P
    Bioorg Med Chem; 1996 Jul; 4(7):1113-9. PubMed ID: 8831983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined use of selective inhibitors and fluorogenic substrates to study the specificity of somatic wild-type angiotensin-converting enzyme.
    Jullien ND; Cuniasse P; Georgiadis D; Yiotakis A; Dive V
    FEBS J; 2006 Apr; 273(8):1772-81. PubMed ID: 16623712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RXP 407, a phosphinic peptide, is a potent inhibitor of angiotensin I converting enzyme able to differentiate between its two active sites.
    Dive V; Cotton J; Yiotakis A; Michaud A; Vassiliou S; Jiracek J; Vazeux G; Chauvet MT; Cuniasse P; Corvol P
    Proc Natl Acad Sci U S A; 1999 Apr; 96(8):4330-5. PubMed ID: 10200262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective inhibition of the C-domain of angiotensin I converting enzyme by bradykinin potentiating peptides.
    Cotton J; Hayashi MA; Cuniasse P; Vazeux G; Ianzer D; De Camargo AC; Dive V
    Biochemistry; 2002 May; 41(19):6065-71. PubMed ID: 11994001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptidase specificity characterization of C- and N-terminal catalytic sites of angiotensin I-converting enzyme.
    Araujo MC; Melo RL; Cesari MH; Juliano MA; Juliano L; Carmona AK
    Biochemistry; 2000 Jul; 39(29):8519-25. PubMed ID: 10913258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drosophila melanogaster angiotensin I-converting enzyme expressed in Pichia pastoris resembles the C domain of the mammalian homologue and does not require glycosylation for secretion and enzymic activity.
    Williams TA; Michaud A; Houard X; Chauvet MT; Soubrier F; Corvol P
    Biochem J; 1996 Aug; 318 ( Pt 1)(Pt 1):125-31. PubMed ID: 8761461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute angiotensin-converting enzyme inhibition increases the plasma level of the natural stem cell regulator N-acetyl-seryl-aspartyl-lysyl-proline.
    Azizi M; Rousseau A; Ezan E; Guyene TT; Michelet S; Grognet JM; Lenfant M; Corvol P; Ménard J
    J Clin Invest; 1996 Feb; 97(3):839-44. PubMed ID: 8609242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo assessment of captopril selectivity of angiotensin I-converting enzyme inhibition: differential inhibition of acetyl-ser-asp-lys-pro and angiotensin I hydrolysis.
    Junot C; Menard J; Gonzales MF; Michaud A; Corvol P; Ezan E
    J Pharmacol Exp Ther; 1999 Jun; 289(3):1257-61. PubMed ID: 10336514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antifibrotic peptide N-acetyl-Ser-Asp-Lys-Pro (Ac-SDKP): opportunities for angiotensin-converting enzyme inhibitor design.
    Douglas RG; Ehlers MR; Sturrock ED
    Clin Exp Pharmacol Physiol; 2013 Aug; 40(8):535-41. PubMed ID: 23351021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural determinants of RXPA380, a potent and highly selective inhibitor of the angiotensin-converting enzyme C-domain.
    Georgiadis D; Cuniasse P; Cotton J; Yiotakis A; Dive V
    Biochemistry; 2004 Jun; 43(25):8048-54. PubMed ID: 15209500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Positional-scanning combinatorial libraries of fluorescence resonance energy transfer peptides for defining substrate specificity of the angiotensin I-converting enzyme and development of selective C-domain substrates.
    Bersanetti PA; Andrade MC; Casarini DE; Juliano MA; Nchinda AT; Sturrock ED; Juliano L; Carmona AK
    Biochemistry; 2004 Dec; 43(50):15729-36. PubMed ID: 15595828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Absence of the ACE N-Domain Decreases Renal Inflammation and Facilitates Sodium Excretion during Diabetic Kidney Disease.
    Eriguchi M; Bernstein EA; Veiras LC; Khan Z; Cao DY; Fuchs S; McDonough AA; Toblli JE; Gonzalez-Villalobos RA; Bernstein KE; Giani JF
    J Am Soc Nephrol; 2018 Oct; 29(10):2546-2561. PubMed ID: 30185469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renal and metabolic clearance of N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) during angiotensin-converting enzyme inhibition in humans.
    Azizi M; Ezan E; Reny JL; Wdzieczak-Bakala J; Gerineau V; Ménard J
    Hypertension; 1999 Mar; 33(3):879-86. PubMed ID: 10082503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.