BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 10037606)

  • 1. Prion domain initiation of amyloid formation in vitro from native Ure2p.
    Taylor KL; Cheng N; Williams RW; Steven AC; Wickner RB
    Science; 1999 Feb; 283(5406):1339-43. PubMed ID: 10037606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The prion domain of yeast Ure2p induces autocatalytic formation of amyloid fibers by a recombinant fusion protein.
    Schlumpberger M; Wille H; Baldwin MA; Butler DA; Herskowitz I; Prusiner SB
    Protein Sci; 2000 Mar; 9(3):440-51. PubMed ID: 10752606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability, folding, dimerization, and assembly properties of the yeast prion Ure2p.
    Thual C; Bousset L; Komar AA; Walter S; Buchner J; Cullin C; Melki R
    Biochemistry; 2001 Feb; 40(6):1764-73. PubMed ID: 11327838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The [URE3] prion is an aggregated form of Ure2p that can be cured by overexpression of Ure2p fragments.
    Edskes HK; Gray VT; Wickner RB
    Proc Natl Acad Sci U S A; 1999 Feb; 96(4):1498-503. PubMed ID: 9990052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells.
    Masison DC; Wickner RB
    Science; 1995 Oct; 270(5233):93-5. PubMed ID: 7569955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural characterization of the fibrillar form of the yeast Saccharomyces cerevisiae prion Ure2p.
    Bousset L; Redeker V; Decottignies P; Dubois S; Le Maréchal P; Melki R
    Biochemistry; 2004 May; 43(17):5022-32. PubMed ID: 15109261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The native-like conformation of Ure2p in fibrils assembled under physiologically relevant conditions switches to an amyloid-like conformation upon heat-treatment of the fibrils.
    Bousset L; Briki F; Doucet J; Melki R
    J Struct Biol; 2003 Feb; 141(2):132-42. PubMed ID: 12615539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prion filament networks in [URE3] cells of Saccharomyces cerevisiae.
    Speransky VV; Taylor KL; Edskes HK; Wickner RB; Steven AC
    J Cell Biol; 2001 Jun; 153(6):1327-36. PubMed ID: 11402074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prion generation in vitro: amyloid of Ure2p is infectious.
    Brachmann A; Baxa U; Wickner RB
    EMBO J; 2005 Sep; 24(17):3082-92. PubMed ID: 16096644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The [URE3] yeast prion results from protein aggregates that differ from amyloid filaments formed in vitro.
    Ripaud L; Maillet L; Immel-Torterotot F; Durand F; Cullin C
    J Biol Chem; 2004 Dec; 279(49):50962-8. PubMed ID: 15456789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prions in Saccharomyces and Podospora spp.: protein-based inheritance.
    Wickner RB; Taylor KL; Edskes HK; Maddelein ML; Moriyama H; Roberts BT
    Microbiol Mol Biol Rev; 1999 Dec; 63(4):844-61, table of contents. PubMed ID: 10585968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of inactivation on prion conversion of the Saccharomyces cerevisiae Ure2 protein.
    Baxa U; Speransky V; Steven AC; Wickner RB
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5253-60. PubMed ID: 11959975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the globular region of the prion protein Ure2 from the yeast Saccharomyces cerevisiae.
    Bousset L; Belrhali H; Janin J; Melki R; Morera S
    Structure; 2001 Jan; 9(1):39-46. PubMed ID: 11342133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disulfide bond formation significantly accelerates the assembly of Ure2p fibrils because of the proximity of a potential amyloid stretch.
    Fei L; Perrett S
    J Biol Chem; 2009 Apr; 284(17):11134-41. PubMed ID: 19258323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cellular concentration of the yeast Ure2p prion protein affects its propagation as a prion.
    Crapeau M; Marchal C; Cullin C; Maillet L
    Mol Biol Cell; 2009 Apr; 20(8):2286-96. PubMed ID: 19225154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of beta-sheet structure in Ure2p1-89 yeast prion fibrils by solid-state nuclear magnetic resonance.
    Baxa U; Wickner RB; Steven AC; Anderson DE; Marekov LN; Yau WM; Tycko R
    Biochemistry; 2007 Nov; 46(45):13149-62. PubMed ID: 17953455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Filaments of the Ure2p prion protein have a cross-beta core structure.
    Baxa U; Cheng N; Winkler DC; Chiu TK; Davies DR; Sharma D; Inouye H; Kirschner DA; Wickner RB; Steven AC
    J Struct Biol; 2005 May; 150(2):170-9. PubMed ID: 15866740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary sequence independence for prion formation.
    Ross ED; Edskes HK; Terry MJ; Wickner RB
    Proc Natl Acad Sci U S A; 2005 Sep; 102(36):12825-30. PubMed ID: 16123127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Architecture of Ure2p prion filaments: the N-terminal domains form a central core fiber.
    Baxa U; Taylor KL; Wall JS; Simon MN; Cheng N; Wickner RB; Steven AC
    J Biol Chem; 2003 Oct; 278(44):43717-27. PubMed ID: 12917441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scrambled prion domains form prions and amyloid.
    Ross ED; Baxa U; Wickner RB
    Mol Cell Biol; 2004 Aug; 24(16):7206-13. PubMed ID: 15282319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.