BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 10037700)

  • 21. 2'-O,4'-C-ethylene bridged nucleic acid modification enhances pyrimidine motif triplex-forming ability under physiological condition.
    Torigoe H; Sato N; Nagasawa N
    J Biochem; 2012 Jul; 152(1):17-26. PubMed ID: 22563101
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Promotion of triplex formation by N3'-->P5' phosphoramidate modification: thermodynamic and kinetic studies.
    Torigoe H
    Nucleic Acids Res Suppl; 2001; (1):57-8. PubMed ID: 12836262
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of backbone structure on polycation comb-type copolymer/DNA interactions and the molecular assembly of DNA.
    Sato Y; Kobayashi Y; Kamiya T; Watanabe H; Akaike T; Yoshikawa K; Maruyama A
    Biomaterials; 2005 Mar; 26(7):703-11. PubMed ID: 15350774
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of ENA modification of triplex-forming oligonucleotide on pyrimidine motif triplex formation.
    Torigoe H; Nagasawa N
    Nucleic Acids Symp Ser (Oxf); 2007; (51):161-2. PubMed ID: 18029636
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synergistic stabilization of nucleic acid assembly by 2'-O,4'-C-methylene-bridged nucleic acid modification and additions of comb-type cationic copolymers.
    Torigoe H; Maruyama A; Obika S; Imanishi T; Katayama T
    Biochemistry; 2009 Apr; 48(15):3545-53. PubMed ID: 19170613
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Triplex formation using ODN conjugates with polycation comb-type copolymer.
    Ueda M; Saito M; Ishihara T; Akaike T; Maruyama A
    Nucleic Acids Symp Ser; 2000; (44):209-10. PubMed ID: 12903342
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acceleration of DNA strand exchange by polycation comb-type copolymer.
    Kim WJ; Ishihara T; Akaike T; Maruyama A
    Nucleic Acids Symp Ser; 2000; (44):289-90. PubMed ID: 12903382
    [TBL] [Abstract][Full Text] [Related]  

  • 28. pH and cation effects on the properties of parallel pyrimidine motif DNA triplexes.
    Sugimoto N; Wu P; Hara H; Kawamoto Y
    Biochemistry; 2001 Aug; 40(31):9396-405. PubMed ID: 11478909
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combination of poly(L-lysine)-graft-dextran copolymer and 2'-O,4'-C-methylene bridged nucleic acid (2',4'-BNA) modification synergistically stabilizes pyrimidine motif triplex at neutral pH.
    Torigoe H; Katayama T; Obika S; Maruyama A; Imanishi T
    Nucleosides Nucleotides Nucleic Acids; 2005; 24(5-7):635-8. PubMed ID: 16248002
    [No Abstract]   [Full Text] [Related]  

  • 30. Rational combination of strategies to achieve synergistic stabilization of triplex.
    Torigoe H; Akaike T; Maruyama A
    Nucleic Acids Res Suppl; 2003; (3):221-2. PubMed ID: 14510460
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acceleration of DNA strand exchange by polycation comb-type copolymer.
    Kim WJ; Ishihara T; Akaike T; Maruyama A
    Nucleic Acids Symp Ser; 1999; (42):139-40. PubMed ID: 10780418
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Poly (L-lysine)-graft-dextran acts as a nucleic acid chaperone for tetramolecular quadruplex formation.
    Moriyama R; Shimada N; Kano A; Maruyama A
    Nucleic Acids Symp Ser (Oxf); 2008; (52):227-8. PubMed ID: 18776336
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermodynamic and kinetic studies of DNA triplex formation of an oligohomopyrimidine and a matched duplex by filter binding assay.
    Shindo H; Torigoe H; Sarai A
    Biochemistry; 1993 Aug; 32(34):8963-9. PubMed ID: 8364041
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Promotion of triplex formation by 2'-O,4'-C-methylene bridged nucleic acid (2',4'-BNA) modification: thermodynamic and kinetic studies.
    Torigoe H; Obika S; Imanishi T
    Nucleosides Nucleotides Nucleic Acids; 2001; 20(4-7):1235-8. PubMed ID: 11562992
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polyamine effects on purine-purine-pyrimidine triple helix formation by phosphodiester and phosphorothioate oligodeoxyribonucleotides.
    Musso M; Van Dyke MW
    Nucleic Acids Res; 1995 Jun; 23(12):2320-7. PubMed ID: 7610062
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Promotion of pyrimidine motif triplex formation by morpholino modification of triplex-forming oligonucleotide: kinetic and thermodynamic studies.
    Torigoe H; Kawahashi K; Tamura Y
    Nucleosides Nucleotides Nucleic Acids; 2005; 24(5-7):1019-21. PubMed ID: 16248083
    [No Abstract]   [Full Text] [Related]  

  • 37. Pyrimidine-purine-pyrimidine triplex DNA stabilization in the presence of tetramine and pentamine analogues of spermine.
    Thomas TJ; Ashley C; Thomas T; Shirahata A; Sigal LH; Lee JS
    Biochem Cell Biol; 1997; 75(3):207-15. PubMed ID: 9404640
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Promotion of triplex formation by 3'-amino-2'-O,4'-C-methylene bridged nucleic acid modification.
    Sasaki K; Rahman SM; Sato N; Obika S; Imanishi T; Torigoe H
    Nucleic Acids Symp Ser (Oxf); 2009; (53):159-60. PubMed ID: 19749309
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A molecular beacon strategy for the thermodynamic characterization of triplex DNA: triplex formation at the promoter region of cyclin D1.
    Antony T; Thomas T; Sigal LH; Shirahata A; Thomas TJ
    Biochemistry; 2001 Aug; 40(31):9387-95. PubMed ID: 11478908
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stabilization of triple-helical nucleic acids by basic oligopeptides.
    Potaman VN; Sinden RR
    Biochemistry; 1995 Nov; 34(45):14885-92. PubMed ID: 7578100
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.