BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 10037700)

  • 41. Promotion of triplex formation by 2'-O,4'-C-aminomethylene bridged nucleic acid (2',4'-BNA NC) modification.
    Sasaki K; Rahman SM; Obika S; Imanishi T; Torigoe H
    Nucleic Acids Symp Ser (Oxf); 2008; (52):419-20. PubMed ID: 18776432
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thermodynamic, kinetic, and conformational properties of a parallel intermolecular DNA triplex containing 5' and 3' junctions.
    Asensio JL; Dosanjh HS; Jenkins TC; Lane AN
    Biochemistry; 1998 Oct; 37(43):15188-98. PubMed ID: 9790683
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Triplex formation of chemically modified homopyrimidine oligonucleotides: thermodynamic and kinetic studies.
    Torigoe H; Shimizume R; Sarai A; Shindo H
    Biochemistry; 1999 Nov; 38(44):14653-9. PubMed ID: 10545190
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Polycation graft copolymers accelerating DNA strand exchange: involvement of ionic interaction.
    Kim WJ; Ishihara T; Akaike T; Maruyama A
    Nucleic Acids Res Suppl; 2001; (1):151-2. PubMed ID: 12836309
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Kinetic analysis of triple-helix formation by pyrimidine oligodeoxynucleotides and duplex DNA.
    Xodo LE
    Eur J Biochem; 1995 Mar; 228(3):918-26. PubMed ID: 7737194
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of poly(L-lysine)-g-dextran copolymers on DNA hybridization.
    Wu L; Shimada N; Kano A; Maruyama A
    Nucleic Acids Symp Ser (Oxf); 2007; (51):73-4. PubMed ID: 18029592
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Differential effects of cyclopolyamines on the stability and conformation of triplex DNA.
    Antony T; Musso M; Hosseini MW; Brand G; Greenfield NJ; Thomas T; Van Dyke MW; Thomas TJ
    Antisense Nucleic Acid Drug Dev; 1999 Feb; 9(1):13-23. PubMed ID: 10192285
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comb-type cationic copolymer expedites DNA strand exchange while stabilizing DNA duplex.
    Kim WJ; Ishihara T; Akaike T; Maruyama A
    Chemistry; 2001 Jan; 7(1):176-80. PubMed ID: 11205009
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermodynamic analyses of triplex formation with homopurine oligonucleotide.
    Torigoe H; Shimizume R
    Nucleic Acids Symp Ser; 2000; (44):61-2. PubMed ID: 12903268
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of chain length modification and bis(ethyl) substitution of spermine analogs on purine-purine-pyrimidine triplex DNA stabilization, aggregation, and conformational transitions.
    Musso M; Thomas T; Shirahata A; Sigal LH; Van Dyke MW; Thomas TJ
    Biochemistry; 1997 Feb; 36(6):1441-9. PubMed ID: 9063892
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modulation of Cm/T, G/A, and G/T triplex stability by conjugate groups in the presence and absence of KCl.
    Gamper HB; Kutyavin IV; Rhinehart RL; Lokhov SG; Reed MW; Meyer RB
    Biochemistry; 1997 Dec; 36(48):14816-26. PubMed ID: 9398203
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polyamines favor DNA triplex formation at neutral pH.
    Hampel KJ; Crosson P; Lee JS
    Biochemistry; 1991 May; 30(18):4455-9. PubMed ID: 2021635
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of chemical modification of oligohomopyrimidine on triplex formation: thermodynamic and kinetic studies.
    Torigoe H; Shimizume R; Sarai A; Shindo H
    Nucleic Acids Symp Ser; 1997; (37):267-8. PubMed ID: 9586102
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Energetics of strand-displacement reactions in triple helices: a spectroscopic study.
    Mills M; Arimondo PB; Lacroix L; Garestier T; Hélène C; Klump H; Mergny JL
    J Mol Biol; 1999 Sep; 291(5):1035-54. PubMed ID: 10518941
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Kinetic and thermodynamic analysis of triplex formation between peptide nucleic acid and double-stranded RNA.
    Sato T; Sakamoto N; Nishizawa S
    Org Biomol Chem; 2018 Feb; 16(7):1178-1187. PubMed ID: 29376179
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Triplex formation at physiological pH by 5-Me-dC-N4-(spermine) [X] oligodeoxynucleotides: non protonation of N3 in X of X*G:C triad and effect of base mismatch/ionic strength on triplex stabilities.
    Barawkar DA; Rajeev KG; Kumar VA; Ganesh KN
    Nucleic Acids Res; 1996 Apr; 24(7):1229-37. PubMed ID: 8614624
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comb-type polycations effectively stabilize DNA triplex.
    Maruyama A; Katoh M; Ishihara T; Akaike T
    Bioconjug Chem; 1997; 8(1):3-6. PubMed ID: 9026028
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanism of the formation of DNA triplex and effect of chemical modifications on its stability as studied by isothermal titration calorimetry.
    Kamiya M; Shimizume R; Shindo H; Torigoe H; Sarai A
    Nucleic Acids Symp Ser; 1995; (34):57-8. PubMed ID: 8841550
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chemical modification of the third strand: differential effects on purine and pyrimidine triple helix formation.
    Mills M; Arimondo PB; Lacroix L; Garestier T; Klump H; Mergny JL
    Biochemistry; 2002 Jan; 41(1):357-66. PubMed ID: 11772035
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Presence of divalent cation is not mandatory for the formation of intramolecular purine-motif triplex containing human c-jun protooncogene target.
    Kaushik S; Kaushik M; Svinarchuk F; Malvy C; Fermandjian S; Kukreti S
    Biochemistry; 2011 May; 50(19):4132-42. PubMed ID: 21381700
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.