These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 10037817)

  • 1. Multiple oligodeoxyribonucleotide syntheseson a reusable solid-phase CPG support via the hydroquinone-O,O'-diacetic acid (Q-Linker) linker arm.
    Pon RT; Yu S; Guo Z; Sanghvi YS
    Nucleic Acids Res; 1999 Mar; 27(6):1531-8. PubMed ID: 10037817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroquinone-O,O'-diacetic acid ('Q-linker') as a replacement for succinyl and oxalyl linker arms in solid phase oligonucleotide synthesis.
    Pon RT; Yu S
    Nucleic Acids Res; 1997 Sep; 25(18):3629-35. PubMed ID: 9278483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid esterification of nucleosides to solid-phase supports for oligonucleotide synthesis using uronium and phosphonium coupling reagents.
    Pon RT; Yu S; Sanghvi YS
    Bioconjug Chem; 1999; 10(6):1051-7. PubMed ID: 10563775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tandem oligonucleotide synthesis on solid-phase supports for the production of multiple oligonucleotides.
    Pon RT; Yu S; Sanghvi YS
    J Org Chem; 2002 Feb; 67(3):856-64. PubMed ID: 11856029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attachment of nucleosides to solid-phase supports.
    Pon RT
    Curr Protoc Nucleic Acid Chem; 2001 May; Chapter 3():Unit 3.2. PubMed ID: 18428843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rainbow Universal CPG: a versatile solid support for oligonucleotide synthesis.
    Nelson PS; Muthini S; Vierra M; Acosta L; Smith TH
    Biotechniques; 1997 Apr; 22(4):752-6. PubMed ID: 9105628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and biochemical evaluation of phosphonoformate oligodeoxyribonucleotides.
    Yamada CM; Dellinger DJ; Caruthers MH
    J Am Chem Soc; 2006 Apr; 128(15):5251-61. PubMed ID: 16608361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linker phosphoramidite reagents for the attachment of the first nucleoside to underivatized solid-phase supports.
    Pon RT; Yu S
    Nucleic Acids Res; 2004; 32(2):623-31. PubMed ID: 14752050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. O-selectivity and utility of phosphorylation mediated by phosphite triester intermediates in the N-unprotected phosphoramidite method.
    Ohkubo A; Ezawa Y; Seio K; Sekine M
    J Am Chem Soc; 2004 Sep; 126(35):10884-96. PubMed ID: 15339173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxalyl-CPG: a labile support for synthesis of sensitive oligonucleotide derivatives.
    Alul RH; Singman CN; Zhang GR; Letsinger RL
    Nucleic Acids Res; 1991 Apr; 19(7):1527-32. PubMed ID: 2027761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Versatile linker chemistry for synthesis of 3'-modified DNA.
    Lyttle MH; Adams H; Hudson D; Cook RM
    Bioconjug Chem; 1997; 8(2):193-8. PubMed ID: 9095360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of oligodeoxyribonucleotide with aliphatic amino or phosphate group at the 5' end by the phosphotriester method on a polystyrene support.
    Tanaka T; Sakata T; Fujimoto K; Ikehara M
    Nucleic Acids Res; 1987 Aug; 15(15):6209-24. PubMed ID: 3627986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The isopropoxyacetic group for convenient base protection during solid-support synthesis of oligodeoxyribonucleotides and their triester analogs.
    Uznanski B; Grajkowski A; Wilk A
    Nucleic Acids Res; 1989 Jun; 17(12):4863-71. PubMed ID: 2748339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of a disulfide-linked precipitative soluble support for solution-phase synthesis of trimeric oligodeoxyribonucleotide 3´-(2-chlorophenylphosphate) building blocks.
    Jabgunde AM; Molina AG; Virta P; Lönnberg H
    Beilstein J Org Chem; 2015; 11():1553-60. PubMed ID: 26664575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid synthesis of oligodeoxyribonucleotides. V. Further studies in solid phase synthesis of oligodeoxyribonucleotides through phosphotriester intermediates.
    Gait MJ; Popov SG; Singh M; Titmas RC
    Nucleic Acids Symp Ser; 1980; (7):243-57. PubMed ID: 7255172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The application of nucleic acid chemistry to studies on the functional organization of gene control regions.
    Caruthers MH
    Princess Takamatsu Symp; 1982; 12():295-306. PubMed ID: 6300026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-phase synthesis of peptide nucleic acids.
    Christensen L; Fitzpatrick R; Gildea B; Petersen KH; Hansen HF; Koch T; Egholm M; Buchardt O; Nielsen PE; Coull J; Berg RH
    J Pept Sci; 1995; 1(3):175-83. PubMed ID: 9222994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel class of condensing reagents in phosphodiester oligodeoxyribonucleotides synthesis. Application of the constituents of free terminal carboxy oxytocine gene.
    Téoule R; Derbyshire R; Guy A; Molko D; Roget A
    Nucleic Acids Symp Ser; 1980; (7):23-37. PubMed ID: 7255170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Further optimization of detritylation in solid-phase oligodeoxyribonucleotide synthesis.
    Tram K; Sanghvi YS; Yan H
    Nucleosides Nucleotides Nucleic Acids; 2011 Jan; 30(1):12-9. PubMed ID: 21259160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HBTU activation for automated Fmoc solid-phase peptide synthesis.
    Fields CG; Lloyd DH; Macdonald RL; Otteson KM; Noble RL
    Pept Res; 1991; 4(2):95-101. PubMed ID: 1815783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.