These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 10038219)

  • 1. Resonant inverse photoemission via plasmons.
    Drube W; Himpsel FJ
    Phys Rev Lett; 1988 Jan; 60(2):140-143. PubMed ID: 10038219
    [No Abstract]   [Full Text] [Related]  

  • 2. Resonant inverse photoemission of Bi2Ca1+xSr2-xCu2O8+y and YBa2Cu3O7-x, unoccupied oxygen states, and plasmons.
    Wagener TJ; Hu Y; Gao Y; Jost MB; Weaver JH; Spencer ND; Goretta KC
    Phys Rev B Condens Matter; 1989 Feb; 39(4):2928-2931. PubMed ID: 9948581
    [No Abstract]   [Full Text] [Related]  

  • 3. Photoemission and inverse resonant photoemission studies of Tl2Ba2Ca2Cu3O10+y.
    Meyer HM; Wagener TJ; Weaver JH; Ginley DS
    Phys Rev B Condens Matter; 1989 Apr; 39(10):7343-7346. PubMed ID: 9947405
    [No Abstract]   [Full Text] [Related]  

  • 4. Estimate of the Coulomb correlation energy in CeAg2Ge2 from inverse photoemission and high resolution photoemission spectroscopy.
    Banik S; Arya A; Bendounan A; Maniraj M; Thamizhavel A; Vobornik I; Dhar SK; Deb SK
    J Phys Condens Matter; 2014 Aug; 26(33):335502. PubMed ID: 25077518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Auger resonant Raman scattering in itinerant electron systems: continuum excitation in Cu.
    Föhlisch A; Karis O; Weinelt M; Hasselström J; Nilsson A; Mårtensson N
    Phys Rev Lett; 2002 Jan; 88(2):027601. PubMed ID: 11801036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonant inverse photoemission: A new probe of correlated systems.
    Weibel P; Grioni M; Malterre D; Dardel B; Baer Y
    Phys Rev Lett; 1994 Feb; 72(8):1252-1255. PubMed ID: 10056661
    [No Abstract]   [Full Text] [Related]  

  • 7. Resonant tunneling mediated by resonant emission of intersubband plasmons.
    Kempa K; Gornik E; Unterrainer K; Kast M; Strasser G
    Phys Rev Lett; 2001 Mar; 86(13):2850-3. PubMed ID: 11290055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined experimental setup for spin- and angle-resolved direct and inverse photoemission.
    Budke M; Allmers T; Donath M; Rangelov G
    Rev Sci Instrum; 2007 Nov; 78(11):113909. PubMed ID: 18052490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic field enhancement of individual nanoparticles by correlated scanning and photoemission electron microscopy.
    Peppernick SJ; Joly AG; Beck KM; Hess WP
    J Chem Phys; 2011 Jan; 134(3):034507. PubMed ID: 21261368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-range ordering of Sb multilayers on GaAs(110): Evolution of resonant inverse photoemission.
    Hu Y; Jost MB; Wagener TJ; Weaver JH
    Phys Rev B Condens Matter; 1990 Oct; 42(11):7050-7057. PubMed ID: 9994829
    [No Abstract]   [Full Text] [Related]  

  • 11. Resonant inverse photoemission involving transition-metal 3p-3d subshell interactions.
    Hu Y; Wagener TJ; Gao Y; Weaver JH
    Phys Rev B Condens Matter; 1988 Dec; 38(17):12708-12711. PubMed ID: 9946229
    [No Abstract]   [Full Text] [Related]  

  • 12. Resonant enhancement of inverse photoemission transitions in bulk niobium.
    Pan X; Viescas AJ; Johnson PD
    Phys Rev B Condens Matter; 1989 Aug; 40(5):3425-3428. PubMed ID: 9992299
    [No Abstract]   [Full Text] [Related]  

  • 13. Photoemission, resonant photoemission, and x-ray absorption of a Ru(II) complex adsorbed on rutile TiO2(110) prepared by in situ electrospray deposition.
    Mayor LC; Ben Taylor J; Magnano G; Rienzo A; Satterley CJ; O'Shea JN; Schnadt J
    J Chem Phys; 2008 Sep; 129(11):114701. PubMed ID: 19044974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic structure of cluster assembled nanostructured TiO(2) by resonant photoemission at the Ti L(2,3) edge.
    Caruso T; Lenardi C; Agostino RG; Amati M; Bongiorno G; Mazza T; Policicchio A; Formoso V; Maccallini E; Colavita E; Chiarello G; Finetti P; Sutara F; Skála T; Piseri P; Prince KC; Milani P
    J Chem Phys; 2008 Mar; 128(9):094704. PubMed ID: 18331107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plane wave excitation-detection of non-resonant plasmons along finite-width graphene strips.
    Gómez-Díaz JS; Esquius-Morote M; Perruisseau-Carrier J
    Opt Express; 2013 Oct; 21(21):24856-72. PubMed ID: 24150329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns.
    Alonso-González P; Nikitin AY; Golmar F; Centeno A; Pesquera A; Vélez S; Chen J; Navickaite G; Koppens F; Zurutuza A; Casanova F; Hueso LE; Hillenbrand R
    Science; 2014 Jun; 344(6190):1369-73. PubMed ID: 24855026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unusual energy shifts in resonant photoemission spectra of organic model molecules.
    Peisert H; Biswas I; Zhang L; Schuster BE; Casu MB; Haug A; Batchelor D; Knupfer M; Chassé T
    J Chem Phys; 2009 May; 130(19):194705. PubMed ID: 19466853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonant photoemission and spin polarization of Co(1-x)Fe(x)S(2).
    Zhang X; Wu N; Manno M; Leighton C; Vescovo E; Dowben PA
    J Phys Condens Matter; 2013 Jan; 25(1):012001. PubMed ID: 23160359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Particle plasmons of metal nanospheres: application of multiple scattering approach.
    Chern RL; Liu XX; Chang CC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016609. PubMed ID: 17677587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct and core-resonant double photoemission from Cu(001).
    van Riessen G; Wei Z; Dhaka RS; Winkler C; Schumann FO; Kirschner J
    J Phys Condens Matter; 2010 Mar; 22(9):092201. PubMed ID: 21389410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.