These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 10038869)
1. Escape from a metastable well: The Kramers turnover problem. Grabert H Phys Rev Lett; 1988 Oct; 61(15):1683-1686. PubMed ID: 10038869 [No Abstract] [Full Text] [Related]
2. Simple relations between mean passage times and Kramers' stationary rate. Boilley D; Jurado B; Schmitt C Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056129. PubMed ID: 15600714 [TBL] [Abstract][Full Text] [Related]
3. Kramers escape rate in nonlinear diffusive media. JiangLin Z; Bao JD; Wenping G J Chem Phys; 2006 Jan; 124(2):024112. PubMed ID: 16422576 [TBL] [Abstract][Full Text] [Related]
4. Noise-induced escape on time scales preceding quasistationarity: New developments in the Kramers problem. Soskin SM; Sheka VI; Linnik TL; Arrayas M; Kaufman IK; Luchinsky DG; McClintock PV; Mannella R Chaos; 2001 Sep; 11(3):595-604. PubMed ID: 12779497 [TBL] [Abstract][Full Text] [Related]
5. Kramers' escape problem for fractional Klein-Kramers equation with tempered α-stable waiting times. Gajda J; Magdziarz M Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):021137. PubMed ID: 21928979 [TBL] [Abstract][Full Text] [Related]
6. Noise correlation-induced splitting of Kramers' escape rate from a metastable state. Ghosh PK; Bag BC; Ray DS J Chem Phys; 2007 Jul; 127(4):044510. PubMed ID: 17672710 [TBL] [Abstract][Full Text] [Related]
7. Polymer escape from a metastable Kramers potential: path integral hyperdynamics study. Shin J; Ikonen T; Khandkar MD; Ala-Nissila T; Sung W J Chem Phys; 2010 Nov; 133(18):184902. PubMed ID: 21073227 [TBL] [Abstract][Full Text] [Related]
8. Kramers problem in evolutionary strategies. Dunkel J; Ebeling W; Schimansky-Geier L; Hänggi P Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 1):061118. PubMed ID: 16241210 [TBL] [Abstract][Full Text] [Related]
9. Influence of tether dynamics on forced Kramers escape from a kinetic trap. Sain A; Wortis M Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 1):031102. PubMed ID: 15524501 [TBL] [Abstract][Full Text] [Related]
10. Escape of a driven particle from a metastable state: A semiclassical approach. Ghosh P; Shit A; Chattopadhyay S; Chaudhuri JR J Chem Phys; 2010 Jun; 132(24):244506. PubMed ID: 20590205 [TBL] [Abstract][Full Text] [Related]
11. Coagulation by random velocity fields as a Kramers problem. Mehlig B; Wilkinson M Phys Rev Lett; 2004 Jun; 92(25 Pt 1):250602. PubMed ID: 15244991 [TBL] [Abstract][Full Text] [Related]
12. Multiplicative cross-correlated noise induced escape rate from a metastable state. Chaudhuri JR; Chattopadhyay S; Banik SK J Chem Phys; 2008 Apr; 128(15):154513. PubMed ID: 18433241 [TBL] [Abstract][Full Text] [Related]
13. Thermally activated escape rate for a Brownian particle in a double-well potential for all values of the dissipation. Kalmykov YP; Coffey WT; Titov SV J Chem Phys; 2006 Jan; 124(2):024107. PubMed ID: 16422571 [TBL] [Abstract][Full Text] [Related]
14. Thermally activated escape rate for a Brownian particle in a tilted periodic potential for all values of the dissipation. Coffey WT; Kalmykov YP; Titov SV; Mulligan BP Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 1):061101. PubMed ID: 16906803 [TBL] [Abstract][Full Text] [Related]
15. Single-molecule chemical reactions: reexamination of the Kramers approach. Margolin G; Barkai E Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):025101. PubMed ID: 16196624 [TBL] [Abstract][Full Text] [Related]
16. Short time scales in the Kramers problem: a stepwise growth of the escape flux. Soskin SM; Sheka VI; Linnik TL; Mannella R Phys Rev Lett; 2001 Feb; 86(9):1665-9. PubMed ID: 11290219 [TBL] [Abstract][Full Text] [Related]
17. Reaction rate theory: what it was, where is it today, and where is it going? Pollak E; Talkner P Chaos; 2005 Jun; 15(2):26116. PubMed ID: 16035918 [TBL] [Abstract][Full Text] [Related]
18. Kramers problem: numerical Wiener-Hopf-like model characteristics. Ezin AN; Samgin AL Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056703. PubMed ID: 21230615 [TBL] [Abstract][Full Text] [Related]