These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 10041769)
1. Stability limit of the cryogenic hydrogen maser. Maan AC; Stoof HT; Verhaar BJ; Mandel P Phys Rev Lett; 1990 May; 64(22):2630-2632. PubMed ID: 10041769 [No Abstract] [Full Text] [Related]
2. Measurement of the fundamental thermal noise limit in a cryogenic sapphire frequency standard using bimodal maser oscillations. Benmessai K; Creedon DL; Tobar ME; Bourgeois PY; Kersalé Y; Giordano V Phys Rev Lett; 2008 Jun; 100(23):233901. PubMed ID: 18643500 [TBL] [Abstract][Full Text] [Related]
7. Dynamics of the cryogenic hydrogen maser. Mandel P; Maan AC; Verhaar BJ; Stoof HT Phys Rev A; 1991 Jul; 44(1):608-616. PubMed ID: 9905711 [No Abstract] [Full Text] [Related]
8. Spectrally narrow, long-term stable optical frequency reference based on a Eu3+:Y2SiO5 crystal at cryogenic temperature. Chen QF; Troshyn A; Ernsting I; Kayser S; Vasilyev S; Nevsky A; Schiller S Phys Rev Lett; 2011 Nov; 107(22):223202. PubMed ID: 22182027 [TBL] [Abstract][Full Text] [Related]
9. Ultrastable laser with average fractional frequency drift rate below 5 × 10⁻¹⁹/s. Hagemann C; Grebing C; Lisdat C; Falke S; Legero T; Sterr U; Riehle F; Martin MJ; Ye J Opt Lett; 2014 Sep; 39(17):5102-5. PubMed ID: 25166084 [TBL] [Abstract][Full Text] [Related]
10. Absolute and relative stability of an optical frequency reference based on spectral hole burning in Eu3+:Y2SiO5. Leibrandt DR; Thorpe MJ; Chou CW; Fortier TM; Diddams SA; Rosenband T Phys Rev Lett; 2013 Dec; 111(23):237402. PubMed ID: 24476301 [TBL] [Abstract][Full Text] [Related]
11. Composite clock including a Cs clock, an H-maser clock, and a voltage-controlled oscillator. Plantard C; Mbaye PM; Vernotte F IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):707-13. PubMed ID: 20211791 [TBL] [Abstract][Full Text] [Related]
12. Collisional frequency shifts and line broadening in the cryogenic deuterium maser. Tiesinga E; Crampton SB; Verhaar BJ; Stoof HT Phys Rev A; 1993 May; 47(5):4342-4347. PubMed ID: 9909442 [No Abstract] [Full Text] [Related]
13. Cryogenic H maser in a strong B field. Maan AC; Stoof HT; Verhaar BJ Phys Rev A; 1990 Mar; 41(5):2614-2620. PubMed ID: 9903394 [No Abstract] [Full Text] [Related]
14. A new method to reduce frequency-temperature coefficient of sapphire-loaded cavities for compact hydrogen masers. Yang RF; Zhou TZ; Chen HB; Wang NR; Gao LS IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):583-6. PubMed ID: 20211773 [TBL] [Abstract][Full Text] [Related]
15. An experimental study for the compact hydrogen maser with a TE111 septum cavity. Wang Q; Zhai Z; Zhang W; Lin C IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):197-200. PubMed ID: 18238531 [TBL] [Abstract][Full Text] [Related]
16. A gravitationally lensed water maser in the early Universe. Impellizzeri CM; McKean JP; Castangia P; Roy AL; Henkel C; Brunthaler A; Wucknitz O Nature; 2008 Dec; 456(7224):927-9. PubMed ID: 19092930 [TBL] [Abstract][Full Text] [Related]
17. Tests of Lorentz invariance using a microwave resonator. Wolf P; Bize S; Clairon A; Luiten AN; Santarelli G; Tobar ME Phys Rev Lett; 2003 Feb; 90(6):060402. PubMed ID: 12633279 [TBL] [Abstract][Full Text] [Related]
18. Physics of systematic frequency variations in hydrogen masers. Mattison EM IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(2):250-5. PubMed ID: 18263143 [TBL] [Abstract][Full Text] [Related]
19. Polarized maser growth. Melrose DB; Judge AC Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056408. PubMed ID: 15600766 [TBL] [Abstract][Full Text] [Related]
20. Stability and phase noise tests of two cryo-cooled sapphire oscillators. Dick GJ; Wang NT IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(5):1098-101. PubMed ID: 18238646 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]