BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 10043154)

  • 1. Anomalous behavior of nuclear spin-lattice relaxation rates in YBa2Cu3O7 below Tc.
    Barrett SE; Martindale JA; Durand DJ; Pennington CH; Slichter CP; Friedmann TA; Rice JP; Ginsberg DM
    Phys Rev Lett; 1991 Jan; 66(1):108-111. PubMed ID: 10043154
    [No Abstract]   [Full Text] [Related]  

  • 2. In-plane charge modulation below T(c) and charge-density-wave correlations in the chain layer in YBa2Cu3O7.
    Grevin B; Berthier Y; Collin G
    Phys Rev Lett; 2000 Aug; 85(6):1310-3. PubMed ID: 10991539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic field effect on 63Cu nuclear relaxation rates in YBa2Cu3O7 and in La1.85Sr0.15CuO4 above and below Tc.
    Borsa F; Rigamonti A; Corti M; Ziolo J; Hyun OB; Torgeson DR
    Phys Rev Lett; 1992 Feb; 68(5):698-701. PubMed ID: 10045967
    [No Abstract]   [Full Text] [Related]  

  • 4. Spin-lattice NMR relaxation by anomalous translational diffusion.
    Sitnitsky AE; Pimenov GG; Anisimov AV
    J Magn Reson; 2005 Jan; 172(1):48-55. PubMed ID: 15589407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase diagram and spin dynamics in volborthite with a distorted kagome lattice.
    Yoshida M; Takigawa M; Yoshida H; Okamoto Y; Hiroi Z
    Phys Rev Lett; 2009 Aug; 103(7):077207. PubMed ID: 19792685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The tetranuclear manganese cluster in photosystem II: location and magnetic properties of the S2 state as determined by saturation-recovery EPR spectroscopy.
    Koulougliotis D; Schweitzer RH; Brudvig GW
    Biochemistry; 1997 Aug; 36(32):9735-46. PubMed ID: 9245405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muon spin relaxation studies of magnetic-field-induced effects in high-Tc superconductors.
    Savici AT; Fukaya A; Gat-Malureanu IM; Ito T; Russo PL; Uemura YJ; Wiebe CR; Kyriakou PP; MacDougall GJ; Rovers MT; Luke GM; Kojima KM; Goto M; Uchida S; Kadono R; Yamada K; Tajima S; Masui T; Eisaki H; Kaneko N; Greven M; Gu GD
    Phys Rev Lett; 2005 Oct; 95(15):157001. PubMed ID: 16241752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear-spin-lattice relaxation-rate measurements in YBa2Cu3O7.
    Martindale JA; Barrett SE; Durand DJ; O'Hara KE; Slichter CP; Lee WC; Ginsberg DM
    Phys Rev B Condens Matter; 1994 Nov; 50(18):13645-13652. PubMed ID: 9975561
    [No Abstract]   [Full Text] [Related]  

  • 9. Explanation of spin-lattice relaxation rates of spin labels obtained with multifrequency saturation recovery EPR.
    Mailer C; Nielsen RD; Robinson BH
    J Phys Chem A; 2005 May; 109(18):4049-61. PubMed ID: 16833727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic-field dependence of planar copper and oxygen spin-lattice relaxation rates in the superconducting state of YBa2Cu3O7.
    Martindale JA; Barrett SE; O'Hara KE; Slichter CP; Lee WC; Ginsberg DM
    Phys Rev B Condens Matter; 1993 Apr; 47(14):9155-9157. PubMed ID: 10004978
    [No Abstract]   [Full Text] [Related]  

  • 11. Comparison of nuclear spin relaxation rates at Y and O sites in YBa2Cu3O7-y.
    Takigawa M; Hults WL; Smith JL
    Phys Rev Lett; 1993 Oct; 71(16):2650-2653. PubMed ID: 10054735
    [No Abstract]   [Full Text] [Related]  

  • 12. Anisotropy and magnetic field dependence of the planar copper NMR spin-lattice relaxation rate in the superconducting state of YBa2Cu3O7.
    Martindale JA; Barrett SE; Klug CA; O'Hara KE; DeSoto SM; Slichter CP; Friedmann TA; Ginsberg DM
    Phys Rev Lett; 1992 Feb; 68(5):702-705. PubMed ID: 10045968
    [No Abstract]   [Full Text] [Related]  

  • 13. Temperature-dependent anisotropy of Cu(2) nuclear-relaxation rate in YBa2Cu3O7 below Tc.
    Takigawa M; Smith JL; Hults WL
    Phys Rev B Condens Matter; 1991 Oct; 44(14):7764-7767. PubMed ID: 9998704
    [No Abstract]   [Full Text] [Related]  

  • 14. Spatially resolved nuclear spin relaxation, electron spin relaxation and light absorption in swift heavy ion irradiated LiF crystals.
    Stork H; Dinse KP; Ditter M; Fujara F; Masierak W; Neumann R; Schuster B; Schwartz K; Trautmann C
    J Phys Condens Matter; 2010 May; 22(18):185402. PubMed ID: 21393683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 31P NMR relaxation studies of the activation of the coenzyme phosphate of glycogen phosphorylase. The role of motion of the bound phosphate.
    Withers SG; Madsen NB; Sykes BD
    Biophys J; 1985 Dec; 48(6):1019-26. PubMed ID: 3937556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An NMR study of the origin of dioxygen-induced spin-lattice relaxation enhancement and chemical shift perturbation.
    Prosser RS; Luchette PA
    J Magn Reson; 2004 Dec; 171(2):225-32. PubMed ID: 15546748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LiVGe2O6, an anomalous quasi-1D, S = 1 system, as revealed by NMR.
    Gavilano JL; Mushkolaj S; Ott HR; Millet P; Mila F
    Phys Rev Lett; 2000 Jul; 85(2):409-12. PubMed ID: 10991295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 13C spin-lattice relaxation in natural diamond: Zeeman relaxation at 4.7 T and 300 K due to fixed paramagnetic nitrogen defects.
    Terblanche CJ; Reynhardt EC; van Wyk JA
    Solid State Nucl Magn Reson; 2001; 20(1-2):1-22. PubMed ID: 11529416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-field approach to double resonance in nuclear quadrupole resonance of spin-1 nuclei.
    Prescott DW; Olmedo O; Soon S; Sauer KL
    J Chem Phys; 2007 May; 126(20):204504. PubMed ID: 17552775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the glassy dynamics and thermal mixing in the dynamic nuclear polarization and relaxation mechanisms of pyruvic acid.
    Filibian M; Colombo Serra S; Moscardini M; Rosso A; Tedoldi F; Carretta P
    Phys Chem Chem Phys; 2014 Dec; 16(48):27025-36. PubMed ID: 25382595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.