These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 10043154)

  • 41. NMR proton spin dynamics in thermotropic liquid crystals subject to multipulse excitation.
    Acosta RH; Zamar RC; Monti GA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 1):041705. PubMed ID: 14682959
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quantitative analysis of backbone dynamics in a crystalline protein from nitrogen-15 spin-lattice relaxation.
    Giraud N; Blackledge M; Goldman M; Böckmann A; Lesage A; Penin F; Emsley L
    J Am Chem Soc; 2005 Dec; 127(51):18190-201. PubMed ID: 16366572
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spin dynamics simulation of electron spin relaxation in Ni²⁺(aq).
    Rantaharju J; Mareš J; Vaara J
    J Chem Phys; 2014 Jul; 141(1):014109. PubMed ID: 25005279
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spin-wave description of nuclear spin-lattice relaxation in Mn12O12 acetate.
    Yamamoto S; Nakanishi T
    Phys Rev Lett; 2002 Oct; 89(15):157603. PubMed ID: 12366024
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interpretation of 1H and 2H spin-lattice relaxation dispersions: insights from molecular dynamics simulations of polymer melts.
    Henritzi P; Bormuth A; Vogel M
    Solid State Nucl Magn Reson; 2013; 54():32-40. PubMed ID: 23830720
    [TBL] [Abstract][Full Text] [Related]  

  • 46. NMR signal analysis to attribute the components to the solid/liquid phases present in mixes and ice creams.
    Mariette F; Lucas T
    J Agric Food Chem; 2005 Mar; 53(5):1317-27. PubMed ID: 15740001
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Relaxation of polarized nuclei in superconducting rhodium.
    Knuuttila TA; Tuoriniemi JT; Lefmann K
    Phys Rev Lett; 2000 Sep; 85(12):2573-6. PubMed ID: 10978110
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Size dependence of 13C nuclear spin-lattice relaxation in micro- and nanodiamonds.
    Panich AM; Sergeev NA; Shames AI; Osipov VY; Boudou JP; Goren SD
    J Phys Condens Matter; 2015 Feb; 27(7):072203. PubMed ID: 25646270
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Normal and anomalous nuclear spin-lattice relaxation at high temperatures in Sc-H(D), Y-H, and Lu-H solid solutions.
    Barnes RG; Han J; Torgeson DR; Baker DB; Conradi MS; Norberg RE
    Phys Rev B Condens Matter; 1995 Feb; 51(6):3503-3511. PubMed ID: 9979160
    [No Abstract]   [Full Text] [Related]  

  • 50. Phosphorus-31 spin-lattice NMR relaxation in bone apatite and its mineral standards.
    Kaflak A; Kolodziejski W
    Solid State Nucl Magn Reson; 2007 Jul; 31(4):174-83. PubMed ID: 17621456
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Impurity nuclear spin-lattice relaxation suppression and charge exchange of chromium ions in a gamma-irradiated ruby crystal.
    Chandoul A; Charnaya EV; Kuleshov AA; Mikushev VM; Ulyashev AM
    J Magn Reson; 1998 Nov; 135(1):113-7. PubMed ID: 9799684
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nuclear magnetic resonance proton dipolar order relaxation in thermotropic liquid crystals: a quantum theoretical approach.
    Zamar RC; Mensio O
    J Chem Phys; 2004 Dec; 121(23):11927-41. PubMed ID: 15634155
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nuclear magnetic resonance and spin relaxation in biological systems.
    Bryant RG; Korb JP
    Magn Reson Imaging; 2005 Feb; 23(2):167-73. PubMed ID: 15833608
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spin dynamics in iron-based layered superconductor (La0.87Ca0.13)FePO revealed by 31P and 139La NMR studies.
    Nakai Y; Ishida K; Kamihara Y; Hirano M; Hosono H
    Phys Rev Lett; 2008 Aug; 101(7):077006. PubMed ID: 18764571
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Protein-lipid interactions. A nuclear magnetic resonance study of sarcoplasmic reticulum Ca2,Mg2+-ATPase, lipophilin, and proteolipid apoprotein-lecithin systems and a comparison with the effects of cholesterol.
    Rice DM; Meadows MD; Scheinman AO; Goñi FM; Gómez-Fernández JC; Moscarello MA; Chapman D; Oldfield E
    Biochemistry; 1979 Dec; 18(26):5893-903. PubMed ID: 160247
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spin and charge excitations in YBa2Cu3O7: Constraints from spin-relaxation rates in the normal state.
    Monien H; Pines D; Slichter CP
    Phys Rev B Condens Matter; 1990 Jun; 41(16):11120-11127. PubMed ID: 9993531
    [No Abstract]   [Full Text] [Related]  

  • 57. Delocalized quasiparticles in the vortex state of an overdoped high-T(c) superconductor probed by 63Cu NMR.
    Zheng GQ; Ozaki H; Kitaoka Y; Kuhns P; Reyes AP; Moulton WG
    Phys Rev Lett; 2002 Feb; 88(7):077003. PubMed ID: 11863931
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Time-resolved study of surface spin effect on spin-lattice relaxation in Fe3O4 nanocrystals.
    Hsia CH; Chen TY; Son DH
    J Am Chem Soc; 2009 Jul; 131(26):9146-7. PubMed ID: 19566088
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 13C spin-lattice relaxation in natural diamond: Zeeman relaxation in fields of 500 to 5000 G at 300 K due to fixed paramagnetic nitrogen defects.
    Terblanche CJ; Reynhardt EC; Rakitianski SA; Van Wyk JA
    Solid State Nucl Magn Reson; 2001; 19(3-4):107-29. PubMed ID: 11508805
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Anomalous variation of the c lattice parameter of a sample of YBa2Cu3O7- delta through the superconducting transition.
    Srinivasan R; Girirajan KS; Ganesan V; Radhakrishnan V; Subba Rao GV
    Phys Rev B Condens Matter; 1988 Jul; 38(1):889-892. PubMed ID: 9945286
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.