These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Varieties of dynamic multiscaling in fluid turbulence. Mitra D; Pandit R Phys Rev Lett; 2004 Jul; 93(2):024501. PubMed ID: 15323922 [TBL] [Abstract][Full Text] [Related]
3. Multifactor analysis of multiscaling in volatility return intervals. Wang F; Yamasaki K; Havlin S; Stanley HE Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):016103. PubMed ID: 19257103 [TBL] [Abstract][Full Text] [Related]
4. Universality of scaling and multiscaling in turbulent symmetric binary fluids. Ray SS; Basu A Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036316. PubMed ID: 22060501 [TBL] [Abstract][Full Text] [Related]
5. Quasisolitons and asymptotic multiscaling in shell models of turbulence. L'vov VS Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026309. PubMed ID: 11863655 [TBL] [Abstract][Full Text] [Related]
6. Multiscaling properties of large-scale structure in the universe. Martínez VJ; Paredes S; Borgani S; Coles P Science; 1995 Sep; 269(5228):1245-7. PubMed ID: 17732110 [TBL] [Abstract][Full Text] [Related]
7. Dynamic multiscaling in two-dimensional fluid turbulence. Ray SS; Mitra D; Perlekar P; Pandit R Phys Rev Lett; 2011 Oct; 107(18):184503. PubMed ID: 22107635 [TBL] [Abstract][Full Text] [Related]
8. Multiscaling in Hall-magnetohydrodynamic turbulence: insights from a shell model. Banerjee D; Ray SS; Sahoo G; Pandit R Phys Rev Lett; 2013 Oct; 111(17):174501. PubMed ID: 24206495 [TBL] [Abstract][Full Text] [Related]
10. Random walk approximation of fractional-order multiscaling anomalous diffusion. Zhang Y; Benson DA; Meerschaert MM; LaBolle EM; Scheffler HP Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026706. PubMed ID: 17025566 [TBL] [Abstract][Full Text] [Related]
11. Test of multiscaling in a diffusion-limited-aggregation model using an off-lattice killing-free algorithm. Menshutin AY; Shchur LN Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 1):011407. PubMed ID: 16486140 [TBL] [Abstract][Full Text] [Related]
12. Detection of early reflections using multifractals. Ristić DM; Pavlović M; Pavlović DŠ; Reljin I J Acoust Soc Am; 2013 Apr; 133(4):EL235-41. PubMed ID: 23556685 [TBL] [Abstract][Full Text] [Related]
13. Generalized similarity, renormalization groups, and nonlinear clocks for multiscaling. Park M; O'Malley D; Cushman JH Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042104. PubMed ID: 24827190 [TBL] [Abstract][Full Text] [Related]
14. Scaling group formulation of multifractals. Platt DE; Family F Phys Rev Lett; 1987 Jun; 58(26):2786-2789. PubMed ID: 10034849 [No Abstract] [Full Text] [Related]
15. Phase transitions in the thermodynamic formalism of multifractals. Katzen D; Procaccia I Phys Rev Lett; 1987 Mar; 58(12):1169-1172. PubMed ID: 10034360 [No Abstract] [Full Text] [Related]
16. Multifractals, operator-product expansion, and field theory. Duplantier B; Ludwig AW Phys Rev Lett; 1991 Jan; 66(3):247-251. PubMed ID: 10043758 [No Abstract] [Full Text] [Related]
17. Fractals and multifractals in early-stage spinodal decomposition and continuous ordering. Klein W Phys Rev Lett; 1990 Sep; 65(12):1462-1465. PubMed ID: 10042272 [No Abstract] [Full Text] [Related]