These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 10046745)

  • 1. Monte Carlo methods for the nuclear shell model.
    Johnson CW; Koonin SE; Lang GH; Ormand WE
    Phys Rev Lett; 1992 Nov; 69(22):3157-3160. PubMed ID: 10046745
    [No Abstract]   [Full Text] [Related]  

  • 2. Spin projection in the shell model monte carlo method and the spin distribution of nuclear level densities.
    Alhassid Y; Liu S; Nakada H
    Phys Rev Lett; 2007 Oct; 99(16):162504. PubMed ID: 17995245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constrained-path quantum Monte Carlo approach for the nuclear shell model.
    Bonnard J; Juillet O
    Phys Rev Lett; 2013 Jul; 111(1):012502. PubMed ID: 23862996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pairing reentrance phenomenon in heated rotating nuclei in the shell-model Monte Carlo approach.
    Dean DJ; Langanke K; Nam H; Nazarewicz W
    Phys Rev Lett; 2010 Nov; 105(21):212504. PubMed ID: 21231296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heavy deformed nuclei in the shell model Monte Carlo method.
    Alhassid Y; Fang L; Nakada H
    Phys Rev Lett; 2008 Aug; 101(8):082501. PubMed ID: 18764607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear Shell Model by the Quantum Monte Carlo Diagonalization Method.
    Honma M; Mizusaki T; Otsuka T
    Phys Rev Lett; 1996 Oct; 77(16):3315-3318. PubMed ID: 10062189
    [No Abstract]   [Full Text] [Related]  

  • 7. Characterization of polymer-silica nanocomposite particles with core-shell morphologies using Monte Carlo simulations and small angle X-ray scattering.
    Balmer JA; Mykhaylyk OO; Schmid A; Armes SP; Fairclough JP; Ryan AJ
    Langmuir; 2011 Jul; 27(13):8075-89. PubMed ID: 21661736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitations in photoactive molecules from quantum Monte Carlo.
    Schautz F; Buda F; Filippi C
    J Chem Phys; 2004 Sep; 121(12):5836-44. PubMed ID: 15367010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition from spherical to deformed shapes of nuclei in the Monte Carlo shell model.
    Shimizu N; Otsuka T; Mizusaki T; Honma M
    Phys Rev Lett; 2001 Feb; 86(7):1171-4. PubMed ID: 11178036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rydberg states with quantum Monte Carlo.
    Bande A; Lüchow A; Della Sala F; Görling A
    J Chem Phys; 2006 Mar; 124(11):114114. PubMed ID: 16555881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Monte Carlo efficiency by Monte Carlo analysis.
    Rubenstein BM; Gubernatis JE; Doll JD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036701. PubMed ID: 21230207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auxiliary field diffusion Monte Carlo calculation of nuclei with A < or = 40 with tensor interactions.
    Gandolfi S; Pederiva F; Fantoni S; Schmidt KE
    Phys Rev Lett; 2007 Jul; 99(2):022507. PubMed ID: 17678221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a surrogate model for elemental analysis using a natural gamma ray spectroscopy tool.
    Zhang Q
    Appl Radiat Isot; 2015 Oct; 104():5-14. PubMed ID: 26123106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing a model of DNA replication to be used for Monte Carlo calculations that predict the sizes and shapes of molecules resulting from DNA double-strand breaks induced by X irradiation during DNA synthesis.
    Dewey WC; Albright N
    Radiat Res; 1997 Nov; 148(5):421-34. PubMed ID: 9355867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo evaluation of path integrals for the nuclear shell model.
    Lang GH; Johnson CW; Koonin SE; Ormand WE
    Phys Rev C Nucl Phys; 1993 Oct; 48(4):1518-1545. PubMed ID: 9968994
    [No Abstract]   [Full Text] [Related]  

  • 16. A Monte Carlo maximum likelihood method for estimating uncertainty arising from shared errors in exposures in epidemiological studies of nuclear workers.
    Stayner L; Vrijheid M; Cardis E; Stram DO; Deltour I; Gilbert SJ; Howe G
    Radiat Res; 2007 Dec; 168(6):757-63. PubMed ID: 18088178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lattice-gas Monte Carlo study of adsorption in pores.
    Trasca RA; Calbi MM; Cole MW; Riccardo JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 1):011605. PubMed ID: 14995631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo simulation of size, random field and temperature dependences of exchange bias in a core/shell magnetic nanoparticle.
    Wu MH; Li QC; Liu JM
    J Phys Condens Matter; 2007 May; 19(18):186202. PubMed ID: 21690983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo methods and techniques status and prospects for future evolution.
    Vaz P
    Appl Radiat Isot; 2010; 68(4-5):536-41. PubMed ID: 19942445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo uncertainty analysis of a diffusion model for the assessment of halogen gas exposure during dosing of brominators.
    Shade WD; Jayjock MA
    Am Ind Hyg Assoc J; 1997 Jun; 58(6):418-24. PubMed ID: 9183836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.