These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 10047208)
1. Effects of dephasing and dissipation on quantum noise in conductors. Shimizu A; Ueda M Phys Rev Lett; 1992 Aug; 69(9):1403-1406. PubMed ID: 10047208 [No Abstract] [Full Text] [Related]
2. Interplay of Ehrenfest and dephasing times in ballistic conductors. Altland A; Brouwer PW; Tian C Phys Rev Lett; 2007 Jul; 99(3):036804. PubMed ID: 17678310 [TBL] [Abstract][Full Text] [Related]
3. Factorization of the dephasing process in a quantum open system. Gao YB; Sun CP Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011105. PubMed ID: 17358108 [TBL] [Abstract][Full Text] [Related]
4. Shot noise spectrum of open dissipative quantum two-level systems. Aguado R; Brandes T Phys Rev Lett; 2004 May; 92(20):206601. PubMed ID: 15169372 [TBL] [Abstract][Full Text] [Related]
5. Dephasing and dissipation in a source-drain model of light-harvesting systems. Xiong SJ; Chen L; Zhao Y Chemphyschem; 2014 Sep; 15(13):2859-70. PubMed ID: 25044624 [TBL] [Abstract][Full Text] [Related]
6. Relationship between the noise-induced persistent current and the dephasing rate. Kravtsov VE; Altshuler BL Phys Rev Lett; 2000 Apr; 84(15):3394-7. PubMed ID: 11019098 [TBL] [Abstract][Full Text] [Related]
7. Noise dephasing in edge states of the integer quantum Hall regime. Roulleau P; Portier F; Roche P; Cavanna A; Faini G; Gennser U; Mailly D Phys Rev Lett; 2008 Oct; 101(18):186803. PubMed ID: 18999848 [TBL] [Abstract][Full Text] [Related]
8. Dephasing and dissipation in qubit thermodynamics. Pekola JP; Masuyama Y; Nakamura Y; Bergli J; Galperin YM Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062109. PubMed ID: 26172663 [TBL] [Abstract][Full Text] [Related]
9. Modeling vibrational dephasing and energy relaxation of intramolecular anharmonic modes for multidimensional infrared spectroscopies. Ishizaki A; Tanimura Y J Chem Phys; 2006 Aug; 125(8):084501. PubMed ID: 16965023 [TBL] [Abstract][Full Text] [Related]
10. Effect of dephasing on the current statistics of mesoscopic devices. Pala MG; Iannaccone G Phys Rev Lett; 2004 Dec; 93(25):256803. PubMed ID: 15697926 [TBL] [Abstract][Full Text] [Related]
11. An analysis of electronic dephasing in the spin-boson model. Hwang H; Rossky PJ J Chem Phys; 2004 Jun; 120(24):11380-5. PubMed ID: 15268171 [TBL] [Abstract][Full Text] [Related]
12. Entangled and sequential quantum protocols with dephasing. Boixo S; Heunen C Phys Rev Lett; 2012 Mar; 108(12):120402. PubMed ID: 22540558 [TBL] [Abstract][Full Text] [Related]
13. Noise-enhanced classical and quantum capacities in communication networks. Caruso F; Huelga SF; Plenio MB Phys Rev Lett; 2010 Nov; 105(19):190501. PubMed ID: 21231154 [TBL] [Abstract][Full Text] [Related]
14. Assessment of the noise annoyance among subway train conductors in Tehran, Iran. Hamidi M; Kavousi A; Zaheri S; Hamadani A; Mirkazemi R Noise Health; 2014; 16(70):177-82. PubMed ID: 24953883 [TBL] [Abstract][Full Text] [Related]
15. Quantum-classical transition of photon-Carnot engine induced by quantum decoherence. Quan HT; Zhang P; Sun CP Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036122. PubMed ID: 16605613 [TBL] [Abstract][Full Text] [Related]
16. Double quantum dots as detectors of high-frequency quantum noise in mesoscopic conductors. Aguado R; Kouwenhoven LP Phys Rev Lett; 2000 Feb; 84(9):1986-9. PubMed ID: 11017677 [TBL] [Abstract][Full Text] [Related]
17. Effective dipolar couplings determined by dipolar dephasing of double-quantum coherences. Schmedt auf der Günne J J Magn Reson; 2006 Jun; 180(2):186-96. PubMed ID: 16524751 [TBL] [Abstract][Full Text] [Related]
19. Validity and breakdown of Onsager symmetry in mesoscopic conductors interacting with environments. Sánchez D; Kang K Phys Rev Lett; 2008 Jan; 100(3):036806. PubMed ID: 18233023 [TBL] [Abstract][Full Text] [Related]
20. Two-dimensional spectroscopy can distinguish between decoherence and dephasing of zero-quantum coherences. Fidler AF; Harel E; Long PD; Engel GS J Phys Chem A; 2012 Jan; 116(1):282-9. PubMed ID: 22191993 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]