BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 10047491)

  • 1. Random circular permutation of DsbA reveals segments that are essential for protein folding and stability.
    Hennecke J; Sebbel P; Glockshuber R
    J Mol Biol; 1999 Mar; 286(4):1197-215. PubMed ID: 10047491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of circularly permuted DsbA(Q100T99): preserved global fold and local structural adjustments.
    Manjasetty BA; Hennecke J; Glockshuber R; Heinemann U
    Acta Crystallogr D Biol Crystallogr; 2004 Feb; 60(Pt 2):304-9. PubMed ID: 14747707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of a catalytic into a structural disulfide bond by circular permutation.
    Hennecke J; Glockshuber R
    Biochemistry; 1998 Dec; 37(50):17590-7. PubMed ID: 9860875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complementation of DsbA deficiency with secreted thioredoxin variants reveals the crucial role of an efficient dithiol oxidant for catalyzed protein folding in the bacterial periplasm.
    Jonda S; Huber-Wunderlich M; Glockshuber R; Mössner E
    EMBO J; 1999 Jun; 18(12):3271-81. PubMed ID: 10369668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folding of circular and permuted chymotrypsin inhibitor 2: retention of the folding nucleus.
    Otzen DE; Fersht AR
    Biochemistry; 1998 Jun; 37(22):8139-46. PubMed ID: 9609709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences between the electronic environments of reduced and oxidized Escherichia coli DsbA inferred from heteronuclear magnetic resonance spectroscopy.
    Couprie J; Remerowski ML; Bailleul A; Courçon M; Gilles N; Quéméneur E; Jamin N
    Protein Sci; 1998 Oct; 7(10):2065-80. PubMed ID: 9792093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural analysis of three His32 mutants of DsbA: support for an electrostatic role of His32 in DsbA stability.
    Guddat LW; Bardwell JC; Glockshuber R; Huber-Wunderlich M; Zander T; Martin JL
    Protein Sci; 1997 Sep; 6(9):1893-900. PubMed ID: 9300489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The uncharged surface features surrounding the active site of Escherichia coli DsbA are conserved and are implicated in peptide binding.
    Guddat LW; Bardwell JC; Zander T; Martin JL
    Protein Sci; 1997 Jun; 6(6):1148-56. PubMed ID: 9194175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of reduced DsbA from Escherichia coli in solution.
    Schirra HJ; Renner C; Czisch M; Huber-Wunderlich M; Holak TA; Glockshuber R
    Biochemistry; 1998 May; 37(18):6263-76. PubMed ID: 9572841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circular permutation of granulocyte colony-stimulating factor.
    Feng Y; Minnerly JC; Zurfluh LL; Joy WD; Hood WF; Abegg AL; Grabbe ES; Shieh JJ; Thurman TL; McKearn JP; McWherter CA
    Biochemistry; 1999 Apr; 38(14):4553-63. PubMed ID: 10194377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preferential binding of an unfolded protein to DsbA.
    Frech C; Wunderlich M; Glockshuber R; Schmid FX
    EMBO J; 1996 Jan; 15(2):392-98. PubMed ID: 8617214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Redox properties and conformational changes of DsbA protein from Escherichia coli periplasm].
    Li Q; Hu HY
    Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2002 Sep; 34(5):583-8. PubMed ID: 12198560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic circular permutation of an entire protein reveals essential folding elements.
    Iwakura M; Nakamura T; Yamane C; Maki K
    Nat Struct Biol; 2000 Jul; 7(7):580-5. PubMed ID: 10876245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The redox properties of protein disulfide isomerase (DsbA) of Escherichia coli result from a tense conformation of its oxidized form.
    Wunderlich M; Jaenicke R; Glockshuber R
    J Mol Biol; 1993 Oct; 233(4):559-66. PubMed ID: 8411164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quenching of tryptophan fluorescence by the active-site disulfide bridge in the DsbA protein from Escherichia coli.
    Hennecke J; Sillen A; Huber-Wunderlich M; Engelborghs Y; Glockshuber R
    Biochemistry; 1997 May; 36(21):6391-400. PubMed ID: 9174355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the role of the cis-proline residue in the active site of DsbA.
    Charbonnier JB; Belin P; Moutiez M; Stura EA; Quéméneur E
    Protein Sci; 1999 Jan; 8(1):96-105. PubMed ID: 10210188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intriguing conformation changes associated with the trans/cis isomerization of a prolyl residue in the active site of the DsbA C33A mutant.
    Ondo-Mbele E; Vivès C; Koné A; Serre L
    J Mol Biol; 2005 Apr; 347(3):555-63. PubMed ID: 15755450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the DeltapKa between the active site cysteines of thioredoxin and DsbA.
    Carvalho AT; Fernandes PA; Ramos MJ
    J Comput Chem; 2006 Jun; 27(8):966-75. PubMed ID: 16586531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The folding process of acylphosphatase from Escherichia coli is remarkably accelerated by the presence of a disulfide bond.
    Parrini C; Bemporad F; Baroncelli A; Gianni S; Travaglini-Allocatelli C; Kohn JE; Ramazzotti M; Chiti F; Taddei N
    J Mol Biol; 2008 Jun; 379(5):1107-18. PubMed ID: 18495159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Snapshots of DsbA in action: detection of proteins in the process of oxidative folding.
    Kadokura H; Tian H; Zander T; Bardwell JC; Beckwith J
    Science; 2004 Jan; 303(5657):534-7. PubMed ID: 14739460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.