These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 10047579)

  • 1. Folding of peptide models of collagen and misfolding in disease.
    Baum J; Brodsky B
    Curr Opin Struct Biol; 1999 Feb; 9(1):122-8. PubMed ID: 10047579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformation of the mechanism of triple-helix peptide folding in the absence of a C-terminal nucleation domain and its implications for mutations in collagen disorders.
    Buevich AV; Silva T; Brodsky B; Baum J
    J Biol Chem; 2004 Nov; 279(45):46890-5. PubMed ID: 15299012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear magnetic resonance shows asymmetric loss of triple helix in peptides modeling a collagen mutation in brittle bone disease.
    Liu X; Kim S; Dai QH; Brodsky B; Baum J
    Biochemistry; 1998 Nov; 37(44):15528-33. PubMed ID: 9799516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteogenesis imperfecta collagen-like peptides: self-assembly and mineralization on surfaces.
    Xu P; Huang J; Cebe P; Kaplan DL
    Biomacromolecules; 2008 Jun; 9(6):1551-7. PubMed ID: 18498187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time NMR investigations of triple-helix folding and collagen folding diseases.
    Baum J; Brodsky B
    Fold Des; 1997; 2(4):R53-60. PubMed ID: 9269560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear magnetic resonance characterization of peptide models of collagen-folding diseases.
    Buevich A; Baum J
    Philos Trans R Soc Lond B Biol Sci; 2001 Feb; 356(1406):159-68. PubMed ID: 11260796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid sequence environment modulates the disruption by osteogenesis imperfecta glycine substitutions in collagen-like peptides.
    Yang W; Battineni ML; Brodsky B
    Biochemistry; 1997 Jun; 36(23):6930-5. PubMed ID: 9188687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal stability and folding of the collagen triple helix and the effects of mutations in osteogenesis imperfecta on the triple helix of type I collagen.
    Bächinger HP; Morris NP; Davis JM
    Am J Med Genet; 1993 Jan; 45(2):152-62. PubMed ID: 8456797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence environment of mutation affects stability and folding in collagen model peptides of osteogenesis imperfecta.
    Bryan MA; Cheng H; Brodsky B
    Biopolymers; 2011; 96(1):4-13. PubMed ID: 20235194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombinant collagen studies link the severe conformational changes induced by osteogenesis imperfecta mutations to the disruption of a set of interchain salt bridges.
    Xu K; Nowak I; Kirchner M; Xu Y
    J Biol Chem; 2008 Dec; 283(49):34337-44. PubMed ID: 18845533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR conformational and dynamic consequences of a gly to ser substitution in an osteogenesis imperfecta collagen model peptide.
    Li Y; Brodsky B; Baum J
    J Biol Chem; 2009 Jul; 284(31):20660-7. PubMed ID: 19451653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteogenesis imperfecta model peptides: incorporation of residues replacing Gly within a triple helix achieved by renucleation and local flexibility.
    Xiao J; Madhan B; Li Y; Brodsky B; Baum J
    Biophys J; 2011 Jul; 101(2):449-58. PubMed ID: 21767498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct NMR measurement of folding kinetics of a trimeric peptide.
    Liu X; Siegel DL; Fan P; Brodsky B; Baum J
    Biochemistry; 1996 Apr; 35(14):4306-13. PubMed ID: 8605179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence dependence of renucleation after a Gly mutation in model collagen peptides.
    Hyde TJ; Bryan MA; Brodsky B; Baum J
    J Biol Chem; 2006 Dec; 281(48):36937-43. PubMed ID: 16998200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Severity of osteogenesis imperfecta and structure of a collagen-like peptide modeling a lethal mutation site.
    Radmer RJ; Klein TE
    Biochemistry; 2004 May; 43(18):5314-23. PubMed ID: 15122897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular abnormalities of collagen: a review.
    Pope FM; Nicholls AC; Dorling J; Webb J
    J R Soc Med; 1983 Dec; 76(12):1050-62. PubMed ID: 6368819
    [No Abstract]   [Full Text] [Related]  

  • 17. CD and NMR investigation of collagen peptides mimicking a pathological Gly-Ser mutation and a natural interruption in a similar highly charged sequence context.
    Sun X; Liu S; Yu W; Wang S; Xiao J
    Protein Sci; 2016 Feb; 25(2):383-92. PubMed ID: 26457583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The folding mechanism of collagen-like model peptides explored through detailed molecular simulations.
    Stultz CM
    Protein Sci; 2006 Sep; 15(9):2166-77. PubMed ID: 16943446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting the clinical lethality of osteogenesis imperfecta from collagen glycine mutations.
    Bodian DL; Madhan B; Brodsky B; Klein TE
    Biochemistry; 2008 May; 47(19):5424-32. PubMed ID: 18412368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disrupting Effects of Osteogenesis Imperfecta Mutations Could Be Predicted by Local Hydrogen Bonding Energy.
    Qiang S; Lu C; Xu F
    Biomolecules; 2022 Aug; 12(8):. PubMed ID: 36008998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.