These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 10047580)

  • 41. Biophysics of protein-lipid interactions.
    Bender PA; Jayaraman V
    Biophys J; 2024 Jul; 123(14):1912-1914. PubMed ID: 37839410
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Engineering membrane proteins.
    Popot JL; Saraste M
    Curr Opin Biotechnol; 1995 Aug; 6(4):394-402. PubMed ID: 7579649
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure, location, and lipid perturbations of melittin at the membrane interface.
    Hristova K; Dempsey CE; White SH
    Biophys J; 2001 Feb; 80(2):801-11. PubMed ID: 11159447
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Proline residues in transmembrane alpha helices affect the folding of bacteriorhodopsin.
    Lu H; Marti T; Booth PJ
    J Mol Biol; 2001 Apr; 308(2):437-46. PubMed ID: 11327778
    [TBL] [Abstract][Full Text] [Related]  

  • 45. General model for lipid-mediated two-dimensional array formation of membrane proteins: application to bacteriorhodopsin.
    Sabra MC; Uitdehaag JC; Watts A
    Biophys J; 1998 Sep; 75(3):1180-8. PubMed ID: 9726920
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Peptides as transmembrane segments: decrypting the determinants for helix-helix interactions in membrane proteins.
    Rath A; Johnson RM; Deber CM
    Biopolymers; 2007; 88(2):217-32. PubMed ID: 17206630
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Peptides derived from apoptotic Bax and Bid reproduce the poration activity of the parent full-length proteins.
    García-Sáez AJ; Coraiola M; Dalla Serra M; Mingarro I; Menestrina G; Salgado J
    Biophys J; 2005 Jun; 88(6):3976-90. PubMed ID: 15778450
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Simulation of NMR data from oriented membrane proteins: practical information for experimental design.
    Sanders CR; Schwonek JP
    Biophys J; 1993 Oct; 65(4):1460-9. PubMed ID: 8274640
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A solvent model for simulations of peptides in bilayers. II. Membrane-spanning alpha-helices.
    Efremov RG; Nolde DE; Vergoten G; Arseniev AS
    Biophys J; 1999 May; 76(5):2460-71. PubMed ID: 10233063
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Deciphering molecular interactions of native membrane proteins by single-molecule force spectroscopy.
    Kedrov A; Janovjak H; Sapra KT; Müller DJ
    Annu Rev Biophys Biomol Struct; 2007; 36():233-60. PubMed ID: 17311527
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Formation of transmembrane helices in vivo--is hydrophobicity all that matters?
    von Heijne G
    J Gen Physiol; 2007 May; 129(5):353-6. PubMed ID: 17438115
    [No Abstract]   [Full Text] [Related]  

  • 52. Structural insights into functional lipid-protein interactions in secondary transporters.
    Koshy C; Ziegler C
    Biochim Biophys Acta; 2015 Mar; 1850(3):476-87. PubMed ID: 24859688
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The impact of peptides on lipid membranes.
    Khandelia H; Ipsen JH; Mouritsen OG
    Biochim Biophys Acta; 2008; 1778(7-8):1528-36. PubMed ID: 18358231
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Proline residues in transmembrane helices of channel and transport proteins: a molecular modelling study.
    Sansom MS
    Protein Eng; 1992 Jan; 5(1):53-60. PubMed ID: 1378612
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Self-assembling layers created by membrane proteins on gold.
    Shah DS; Thomas MB; Phillips S; Cisneros DA; Le Brun AP; Holt SA; Lakey JH
    Biochem Soc Trans; 2007 Jun; 35(Pt 3):522-6. PubMed ID: 17511643
    [TBL] [Abstract][Full Text] [Related]  

  • 56. How do mechanosensitive channels sense membrane tension?
    Rasmussen T
    Biochem Soc Trans; 2016 Aug; 44(4):1019-25. PubMed ID: 27528747
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modelling, folding, kinks and constrictions.
    Nat Struct Biol; 1995 Feb; 2(2):83-4. PubMed ID: 7749922
    [No Abstract]   [Full Text] [Related]  

  • 58. Progress in understanding the role of lipids in membrane protein folding.
    Mitchell DC
    Biochim Biophys Acta; 2012 Apr; 1818(4):951-6. PubMed ID: 22236837
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Folding in lipid membranes (FILM): a novel method for the prediction of small membrane protein 3D structures.
    Pellegrini-Calace M; Carotti A; Jones DT
    Proteins; 2003 Mar; 50(4):537-45. PubMed ID: 12577259
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modulation of folding and assembly of the membrane protein bacteriorhodopsin by intermolecular forces within the lipid bilayer.
    Curran AR; Templer RH; Booth PJ
    Biochemistry; 1999 Jul; 38(29):9328-36. PubMed ID: 10413507
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.