These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 10048019)

  • 21. Substitutions in the N-terminal alpha helical spine of Neisseria gonorrhoeae pilin affect Type IV pilus assembly, dynamics and associated functions.
    Aas FE; Winther-Larsen HC; Wolfgang M; Frye S; Løvold C; Roos N; van Putten JP; Koomey M
    Mol Microbiol; 2007 Jan; 63(1):69-85. PubMed ID: 17140412
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neisseria gonorrhoeae MutS affects pilin antigenic variation through mismatch correction and not by pilE guanine quartet binding.
    Rotman E; Seifert HS
    J Bacteriol; 2015 May; 197(10):1828-38. PubMed ID: 25777677
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Insights into type IV pilus biogenesis and dynamics from genetic analysis of a C-terminally tagged pilin: a role for O-linked glycosylation.
    Vik Å; Aspholm M; Anonsen JH; Børud B; Roos N; Koomey M
    Mol Microbiol; 2012 Sep; 85(6):1166-78. PubMed ID: 22882659
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PilC of Neisseria meningitidis is involved in class II pilus formation and restores pilus assembly, natural transformation competence and adherence to epithelial cells in PilC-deficient gonococci.
    Ryll RR; Rudel T; Scheuerpflug I; Barten R; Meyer TF
    Mol Microbiol; 1997 Mar; 23(5):879-92. PubMed ID: 9076726
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulation of gonococcal piliation by regulatable transcription of pilE.
    Long CD; Hayes SF; van Putten JP; Harvey HA; Apicella MA; Seifert HS
    J Bacteriol; 2001 Mar; 183(5):1600-9. PubMed ID: 11160091
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Type IV pilus assembly proficiency and dynamics influence pilin subunit phospho-form macro- and microheterogeneity in Neisseria gonorrhoeae.
    Vik Å; Anonsen JH; Aas FE; Hegge FT; Roos N; Koomey M; Aspholm M
    PLoS One; 2014; 9(5):e96419. PubMed ID: 24797914
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Type IV pilus structure by cryo-electron microscopy and crystallography: implications for pilus assembly and functions.
    Craig L; Volkmann N; Arvai AS; Pique ME; Yeager M; Egelman EH; Tainer JA
    Mol Cell; 2006 Sep; 23(5):651-62. PubMed ID: 16949362
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Piliation control mechanisms in Neisseria gonorrhoeae.
    Bergström S; Robbins K; Koomey JM; Swanson J
    Proc Natl Acad Sci U S A; 1986 Jun; 83(11):3890-4. PubMed ID: 2872674
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The comP locus of Neisseria gonorrhoeae encodes a type IV prepilin that is dispensable for pilus biogenesis but essential for natural transformation.
    Wolfgang M; van Putten JP; Hayes SF; Koomey M
    Mol Microbiol; 1999 Mar; 31(5):1345-57. PubMed ID: 10200956
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Homo-trimeric Structure of the Type IVb Minor Pilin CofB Suggests Mechanism of CFA/III Pilus Assembly in Human Enterotoxigenic Escherichia coli.
    Kawahara K; Oki H; Fukakusa S; Yoshida T; Imai T; Maruno T; Kobayashi Y; Motooka D; Iida T; Ohkubo T; Nakamura S
    J Mol Biol; 2016 Mar; 428(6):1209-1226. PubMed ID: 26876601
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Requirement of novel competence genes pilT and pilU of Pseudomonas stutzeri for natural transformation and suppression of pilT deficiency by a hexahistidine tag on the type IV pilus protein PilAI.
    Graupner S; Weger N; Sohni M; Wackernagel W
    J Bacteriol; 2001 Aug; 183(16):4694-701. PubMed ID: 11466271
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biochemical purification and crystallographic characterization of the fiber-forming protein pilin from Neisseria gonorrhoeae.
    Parge HE; Bernstein SL; Deal CD; McRee DE; Christensen D; Capozza MA; Kays BW; Fieser TM; Draper D; So M; Getzoff ED; Tainer JA
    J Biol Chem; 1990 Feb; 265(4):2278-85. PubMed ID: 1967608
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pili of Neisseria meningitidis. Analysis of structure and investigation of structural and antigenic relationships to gonococcal pili.
    Stephens DS; Whitney AM; Rothbard J; Schoolnik GK
    J Exp Med; 1985 Jun; 161(6):1539-53. PubMed ID: 2409203
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-resolution structure of a type IV pilin from the metal-reducing bacterium Shewanella oneidensis.
    Gorgel M; Ulstrup JJ; Bøggild A; Jones NC; Hoffmann SV; Nissen P; Boesen T
    BMC Struct Biol; 2015 Feb; 15():4. PubMed ID: 25886849
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transposon mutagenesis identifies sites upstream of the Neisseria gonorrhoeae pilE gene that modulate pilin antigenic variation.
    Kline KA; Criss AK; Wallace A; Seifert HS
    J Bacteriol; 2007 May; 189(9):3462-70. PubMed ID: 17307859
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Type IV pilin structures: insights on shared architecture, fiber assembly, receptor binding and type II secretion.
    Hansen JK; Forest KT
    J Mol Microbiol Biotechnol; 2006; 11(3-5):192-207. PubMed ID: 16983195
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A molecular dynamics study of pilus subunits: insights into pilus biogenesis.
    Vitagliano L; Ruggiero A; Pedone C; Berisio R
    J Mol Biol; 2007 Apr; 367(4):935-41. PubMed ID: 17306829
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pilus biogenesis and epithelial cell adherence of Neisseria gonorrhoeae pilC double knock-out mutants.
    Rudel T; Boxberger HJ; Meyer TF
    Mol Microbiol; 1995 Sep; 17(6):1057-71. PubMed ID: 8594326
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modification of Pseudomonas aeruginosa Pa5196 type IV Pilins at multiple sites with D-Araf by a novel GT-C family Arabinosyltransferase, TfpW.
    Kus JV; Kelly J; Tessier L; Harvey H; Cvitkovitch DG; Burrows LL
    J Bacteriol; 2008 Nov; 190(22):7464-78. PubMed ID: 18805982
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of epitopes recognized by monoclonal antibodies SM1 and SM2 which react with all pili of Neisseria gonorrhoeae but which differentiate between two structural classes of pili expressed by Neisseria meningitidis and the distribution of their encoding sequences in the genomes of Neisseria spp.
    Virji M; Heckels JE; Potts WJ; Hart CA; Saunders JR
    J Gen Microbiol; 1989 Dec; 135(12):3239-51. PubMed ID: 2483993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.