These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 10048217)

  • 41. A practical implementation of multifrequency widefield frequency-domain fluorescence lifetime imaging microscopy.
    Chen H; Gratton E
    Microsc Res Tech; 2013 Mar; 76(3):282-9. PubMed ID: 23296945
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biochemical imaging of human atherosclerotic plaques with fluorescence lifetime angioscopy.
    Thomas P; Pande P; Clubb F; Adame J; Jo JA
    Photochem Photobiol; 2010; 86(3):727-31. PubMed ID: 20331523
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In-depth fluorescence lifetime imaging analysis revealing SNAP25A-Rabphilin 3A interactions.
    Lee JD; Huang PC; Lin YC; Kao LS; Huang CC; Kao FJ; Lin CC; Yang DM
    Microsc Microanal; 2008 Dec; 14(6):507-18. PubMed ID: 18986604
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Determination of three-dimensional imaging properties of a light microscope system. Partial confocal behavior in epifluorescence microscopy.
    Hiraoka Y; Sedat JW; Agard DA
    Biophys J; 1990 Feb; 57(2):325-33. PubMed ID: 2317554
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Fluorescence lifetime imaging microscopy (FLIM) in biological and medical research].
    Korczyński J; Włodarczyk J
    Postepy Biochem; 2009; 55(4):434-40. PubMed ID: 20201357
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Direct frequency domain fluorescence lifetime imaging using simultaneous ultraviolet and visible excitation.
    Serafino MJ; Jo JA
    Biomed Opt Express; 2023 Apr; 14(4):1608-1625. PubMed ID: 37078041
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Upgrading time domain FLIM using an adaptive Monte Carlo data inflation algorithm.
    Trinel D; Leray A; Spriet C; Usson Y; Héliot L
    Cytometry A; 2011 Jul; 79(7):528-37. PubMed ID: 21567936
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Imaging green fluorescent protein fusion proteins in Saccharomyces cerevisiae.
    Shaw SL; Yeh E; Bloom K; Salmon ED
    Curr Biol; 1997 Sep; 7(9):701-4. PubMed ID: 9285714
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improved restoration from multiple images of a single object: application to fluorescence microscopy.
    Verveer PJ; Jovin TM
    Appl Opt; 1998 Sep; 37(26):6240-6. PubMed ID: 18286123
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhancing precision in time-domain fluorescence lifetime imaging.
    Chang CW; Mycek MA
    J Biomed Opt; 2010; 15(5):056013. PubMed ID: 21054107
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [A new approach for studying the retinal and choroidal circulation].
    Yoneya S
    Nippon Ganka Gakkai Zasshi; 2004 Dec; 108(12):836-61; discussion 862. PubMed ID: 15656089
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Light-field tomographic fluorescence lifetime imaging microscopy.
    Ma Y; Huang L; Sen C; Burri S; Bruschini C; Yang X; Cameron RB; Fishbein GA; Gomperts BN; Ozcan A; Charbon E; Gao L
    Res Sq; 2023 May; ():. PubMed ID: 37214842
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Optimization of PET image quality by means of 3D data acquisition and iterative image reconstruction].
    Doll J; Zaers J; Trojan H; Bellemann ME; Adam LE; Haberkorn U; Brix G
    Nuklearmedizin; 1998 Mar; 37(2):62-7. PubMed ID: 9547752
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Automatic segmentation of fluorescence lifetime microscopy images of cells using multiresolution community detection--a first study.
    Hu D; Sarder P; Ronhovde P; Orthaus S; Achilefu S; Nussinov Z
    J Microsc; 2014 Jan; 253(1):54-64. PubMed ID: 24251410
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fluorescence lifetime imaging microscopy (flimscopy). Methodology development and application to studies of endosome fusion in single cells.
    Oida T; Sako Y; Kusumi A
    Biophys J; 1993 Mar; 64(3):676-85. PubMed ID: 8471720
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hadamard-transform fluorescence-lifetime imaging.
    Mizuno T; Iwata T
    Opt Express; 2016 Apr; 24(8):8202-13. PubMed ID: 27137259
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rapid time-lapse 3D oxygen tension measurements within hydrogels using widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) and image segmentation.
    Chang DM; Hsu HH; Ko PL; Chang WJ; Hsieh TH; Wu HM; Tung YC
    Analyst; 2024 Mar; 149(6):1727-1737. PubMed ID: 38375547
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Detection of the interaction between SNAP25 and rabphilin in neuroendocrine PC12 cells using the FLIM/FRET technique.
    Lee JD; Chang YF; Kao FJ; Kao LS; Lin CC; Lu AC; Shyu BC; Chiou SH; Yang DM
    Microsc Res Tech; 2008 Jan; 71(1):26-34. PubMed ID: 17886343
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Harmonic optical microscopy and fluorescence lifetime imaging platform for multimodal imaging.
    Pelegati VB; Adur J; De Thomaz AA; Almeida DB; Baratti MO; Andrade LA; Bottcher-Luiz F; Cesar CL
    Microsc Res Tech; 2012 Oct; 75(10):1383-94. PubMed ID: 22648907
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Combination of a spinning disc confocal unit with frequency-domain fluorescence lifetime imaging microscopy.
    van Munster EB; Goedhart J; Kremers GJ; Manders EM; Gadella TW
    Cytometry A; 2007 Apr; 71(4):207-14. PubMed ID: 17266147
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.