These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 10048405)

  • 1. Delivering neuroactive molecules from biodegradable microspheres for application in central nervous system disorders.
    Cao X; Schoichet MS
    Biomaterials; 1999 Feb; 20(4):329-39. PubMed ID: 10048405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NGF release from poly(D,L-lactide-co-glycolide) microspheres. Effect of some formulation parameters on encapsulated NGF stability.
    Péan JM; Venier-Julienne MC; Boury F; Menei P; Denizot B; Benoit JP
    J Control Release; 1998 Dec; 56(1-3):175-87. PubMed ID: 9801441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formulation, characterization, and evaluation of ketorolac tromethamine-loaded biodegradable microspheres.
    Sinha VR; Trehan A
    Drug Deliv; 2005; 12(3):133-9. PubMed ID: 16025842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyphosphoester microspheres for sustained release of biologically active nerve growth factor.
    Xu X; Yu H; Gao S; Ma HQ; Leong KW; Wang S
    Biomaterials; 2002 Sep; 23(17):3765-72. PubMed ID: 12109702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why does PEG 400 co-encapsulation improve NGF stability and release from PLGA biodegradable microspheres?
    Péan JM; Boury F; Venier-Julienne MC; Menei P; Proust JE; Benoit JP
    Pharm Res; 1999 Aug; 16(8):1294-9. PubMed ID: 10468034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a cell transducible RhoA inhibitor TAT-C3 transferase and its encapsulation in biocompatible microspheres to promote survival and enhance regeneration of severed neurons.
    Tan EY; Law JW; Wang CH; Lee AY
    Pharm Res; 2007 Dec; 24(12):2297-308. PubMed ID: 17899323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of solvent selection and fabrication method on the characteristics of biodegradable poly(lactide-co-glycolide) microspheres containing ovalbumin.
    Cho SW; Song SH; Choi YW
    Arch Pharm Res; 2000 Aug; 23(4):385-90. PubMed ID: 10976588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein loaded biodegradable microspheres based on PLGA-protein bioconjugates.
    Nam YS; Park TG
    J Microencapsul; 1999; 16(5):625-37. PubMed ID: 10499842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro evaluation of the effects of various additives and polymers on nerve growth factor microspheres.
    Sun H; Xu F; Guo D; Liu G
    Drug Dev Ind Pharm; 2014 Apr; 40(4):452-7. PubMed ID: 23565585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustained release of nerve growth factor from biodegradable polymer microspheres.
    Camarata PJ; Suryanarayanan R; Turner DA; Parker RG; Ebner TJ
    Neurosurgery; 1992 Mar; 30(3):313-9. PubMed ID: 1620291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The characterization of paclitaxel-loaded microspheres manufactured from blends of poly(lactic-co-glycolic acid) (PLGA) and low molecular weight diblock copolymers.
    Jackson JK; Hung T; Letchford K; Burt HM
    Int J Pharm; 2007 Sep; 342(1-2):6-17. PubMed ID: 17555895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raloxifene-/raloxifene-poly(ethylene glycol) conjugate-loaded microspheres: A novel strategy for drug delivery to bone forming cells.
    Kavas A; Keskin D; Altunbaş K; Tezcaner A
    Int J Pharm; 2016 Aug; 510(1):168-83. PubMed ID: 27343363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro study of GDNF release from biodegradable PLGA microspheres.
    Aubert-Pouëssel A; Venier-Julienne MC; Clavreul A; Sergent M; Jollivet C; Montero-Menei CN; Garcion E; Bibby DC; Menei P; Benoit JP
    J Control Release; 2004 Mar; 95(3):463-75. PubMed ID: 15023458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradable PLGA microspheres as a sustained release system for a new luteinizing hormone-releasing hormone (LHRH) antagonist.
    Du L; Cheng J; Chi Q; Qie J; Liu Y; Mei X
    Chem Pharm Bull (Tokyo); 2006 Sep; 54(9):1259-65. PubMed ID: 16946531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface studies of coated polymer microspheres and protein release from tissue-engineered scaffolds.
    Meese TM; Hu Y; Nowak RW; Marra KG
    J Biomater Sci Polym Ed; 2002; 13(2):141-51. PubMed ID: 12022746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using polymer chemistry to modulate the delivery of neurotrophic factors from degradable microspheres: delivery of BDNF.
    Bertram JP; Rauch MF; Chang K; Lavik EB
    Pharm Res; 2010 Jan; 27(1):82-91. PubMed ID: 19921405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a single dose tetanus toxoid formulation based on polymeric microspheres: a comparative study of poly(D,L-lactic-co-glycolic acid) versus chitosan microspheres.
    Jaganathan KS; Rao YU; Singh P; Prabakaran D; Gupta S; Jain A; Vyas SP
    Int J Pharm; 2005 Apr; 294(1-2):23-32. PubMed ID: 15814228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer based microspheres of aceclofenac as sustained release parenterals for prolonged anti-inflammatory effect.
    Kaur M; Sharma S; Sinha VR
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():492-500. PubMed ID: 28024613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization of nerve growth factor in controlled release polymers and in tissue.
    Krewson CE; Dause R; Mak M; Saltzman WM
    J Biomater Sci Polym Ed; 1996; 8(2):103-17. PubMed ID: 8957707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TPP ionically cross-linked chitosan/PLGA microspheres for the delivery of NGF for peripheral nerve system repair.
    Zeng W; Hui H; Liu Z; Chang Z; Wang M; He B; Hao D
    Carbohydr Polym; 2021 Apr; 258():117684. PubMed ID: 33593557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.