These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 10049175)

  • 61. The degradation, absorption, and solubility of volatile anesthetics in soda lime depend on water content.
    Strum DP; Eger EI
    Anesth Analg; 1994 Feb; 78(2):340-8. PubMed ID: 8311288
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Physical and physicochemical factors effecting transport of chlorohydrocarbon gases from lung alveolar air to blood as measured by the causation of narcosis.
    Holder JW
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2012 Jan; 30(1):42-80. PubMed ID: 22458856
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Correlation between pharmacological potency and micellar surface potential of local anesthetic.
    Yokoyama S
    Toxicol Lett; 1998 Nov; 100-101():365-8. PubMed ID: 10049166
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A second-generation blood substitute (perflubron emulsion) increases the blood solubility of modern volatile anesthetics in vitro.
    Cuignet OY; Baele PM; Van Obbergh LJ
    Anesth Analg; 2002 Aug; 95(2):368-72, table of contents. PubMed ID: 12145053
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Molecular dynamics of a water-lipid bilayer interface.
    Wilson MA; Pohorille A
    J Am Chem Soc; 1994; 116(4):1490-501. PubMed ID: 11543595
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The effect of lipid and aqueous solubilities on flux of nicotinic acid esters from water through silicone membrane.
    Synovec J; Wasdo SC; Sloan KB
    Drug Dev Ind Pharm; 2013 Sep; 39(9):1494-7. PubMed ID: 22676485
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Ecotoxicology of narcosis: stereoselectivity and potential target sites.
    Sandermann H
    Chemosphere; 2008 Jul; 72(9):1256-9. PubMed ID: 18561982
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Solubility, adsorption, and the thermodynamics of the cutoff effect.
    Katz Y
    J Theor Biol; 2003 Dec; 225(3):341-9. PubMed ID: 14604586
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Folding and translocation of the undecamer of poly-L-leucine across the water-hexane interface. A molecular dynamics study.
    Chipot C; Pohorille A
    J Am Chem Soc; 1998 Nov; 120(46):11912-24. PubMed ID: 11542762
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effect of long-chain alcohols on SDS partitioning to the oil/water interface of emulsions and on droplet size.
    James-Smith MA; Alford K; Shah DO
    J Colloid Interface Sci; 2007 Nov; 315(1):307-12. PubMed ID: 17662299
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The solubility of anesthetic gases in lipid bilayers.
    Smith RA; Porter EG; Miller KW
    Biochim Biophys Acta; 1981 Jul; 645(2):327-38. PubMed ID: 7272292
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Nonanesthetics (nonimmobilizers) and anesthetics display different microenvironment preferences.
    Johansson JS; Zou H
    Anesthesiology; 2001 Aug; 95(2):558-61. PubMed ID: 11506136
    [No Abstract]   [Full Text] [Related]  

  • 73. Preparation of microscopic and planar oil-water interfaces that are decorated with prescribed densities of insoluble amphiphiles.
    Meli MV; Lin IH; Abbott NL
    J Am Chem Soc; 2008 Apr; 130(13):4326-33. PubMed ID: 18335929
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Anesthetic and convulsant properties of aromatic compounds and cycloalkanes: implications for mechanisms of narcosis.
    Fang Z; Sonner J; Laster MJ; Ionescu P; Kandel L; Koblin DD; Eger EI; Halsey MJ
    Anesth Analg; 1996 Nov; 83(5):1097-104. PubMed ID: 8895293
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [Relation between the physical-chemical properties, chemical reactivity and local anesthetic effect in the parethoxycaine series. 22].
    Büchi J; Perlia X; Portmann R
    Arzneimittelforschung; 1968 May; 18(5):610-6. PubMed ID: 5755894
    [No Abstract]   [Full Text] [Related]  

  • 76. Nanoparticle effects on the water-oil interfacial tension.
    Fan H; Striolo A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051610. PubMed ID: 23214796
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Molecular dynamics simulations of water permeation across Nafion membrane interfaces.
    Daly KB; Benziger JB; Panagiotopoulos AZ; Debenedetti PG
    J Phys Chem B; 2014 Jul; 118(29):8798-807. PubMed ID: 24971638
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Adsorbed and spread beta-casein monolayers at oil-water interfaces.
    Maldonado-Valderrama J; Gálvez-Ruiz MJ; Martín-Rodríguez A; Cabrerizo-Vílchez MA
    Langmuir; 2004 Jul; 20(15):6093-5. PubMed ID: 15248688
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Computational studies on the interactions of inhalational anesthetics with proteins.
    Vemparala S; Domene C; Klein ML
    Acc Chem Res; 2010 Jan; 43(1):103-10. PubMed ID: 19788306
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effects of block copolymer's architecture on its association with lipid membranes: experiments and simulations.
    Frey SL; Zhang D; Carignano MA; Szleifer I; Lee KY
    J Chem Phys; 2007 Sep; 127(11):114904. PubMed ID: 17887877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.