BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 10049301)

  • 1. Calculation of a Gap restoration in the membrane skeleton of the red blood cell: possible role for myosin II in local repair.
    Cibert C; Prulière G; Lacombe C; Deprette C; Cassoly R
    Biophys J; 1999 Mar; 76(3):1153-65. PubMed ID: 10049301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An actomyosin contractile mechanism for erythrocyte shape transformations.
    Fowler VM
    J Cell Biochem; 1986; 31(1):1-9. PubMed ID: 3722275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myosin IIA interacts with the spectrin-actin membrane skeleton to control red blood cell membrane curvature and deformability.
    Smith AS; Nowak RB; Zhou S; Giannetto M; Gokhin DS; Papoin J; Ghiran IC; Blanc L; Wan J; Fowler VM
    Proc Natl Acad Sci U S A; 2018 May; 115(19):E4377-E4385. PubMed ID: 29610350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Actin protofilament orientation in deformation of the erythrocyte membrane skeleton.
    Picart C; Dalhaimer P; Discher DE
    Biophys J; 2000 Dec; 79(6):2987-3000. PubMed ID: 11106606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is the surface area of the red cell membrane skeleton locally conserved?
    Fischer TM
    Biophys J; 1992 Feb; 61(2):298-305. PubMed ID: 1547320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freely turning over palmitate in erythrocyte membrane proteins is not responsible for the anchoring of lipid rafts to the spectrin skeleton: a study with bio-orthogonal chemical probes.
    Ciana A; Achilli C; Hannoush RN; Risso A; Balduini C; Minetti G
    Biochim Biophys Acta; 2013 Mar; 1828(3):924-31. PubMed ID: 23219804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hybrid model for erythrocyte membrane: a single unit of protein network coupled with lipid bilayer.
    Zhu Q; Vera C; Asaro RJ; Sche P; Sung LA
    Biophys J; 2007 Jul; 93(2):386-400. PubMed ID: 17449663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contractile stress generation by actomyosin gels.
    Carlsson AE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051912. PubMed ID: 17279944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An elastic network model based on the structure of the red blood cell membrane skeleton.
    Hansen JC; Skalak R; Chien S; Hoger A
    Biophys J; 1996 Jan; 70(1):146-66. PubMed ID: 8770194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New insights into red cell network structure, elasticity, and spectrin unfolding--a current review.
    Discher DE; Carl P
    Cell Mol Biol Lett; 2001; 6(3):593-606. PubMed ID: 11598637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of control of erythrocyte shape: a possible relationship to band 3.
    Wong P
    J Theor Biol; 1994 Nov; 171(2):197-205. PubMed ID: 7844997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct measures of large, anisotropic strains in deformation of the erythrocyte cytoskeleton.
    Lee JC; Wong DT; Discher DE
    Biophys J; 1999 Aug; 77(2):853-64. PubMed ID: 10423431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy of dissociation of lipid bilayer from the membrane skeleton of red blood cells.
    Hwang WC; Waugh RE
    Biophys J; 1997 Jun; 72(6):2669-78. PubMed ID: 9168042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erythrocyte spectrin maintains its segmental motions on oxidation: a spin-label EPR study.
    Fung LW; Kalaw BO; Hatfield RM; Dias MN
    Biophys J; 1996 Feb; 70(2):841-51. PubMed ID: 8789101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Actin protofilament orientation at the erythrocyte membrane.
    Picart C; Discher DE
    Biophys J; 1999 Aug; 77(2):865-78. PubMed ID: 10423432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphatidylserine binding sites in erythroid spectrin: location and implications for membrane stability.
    An X; Guo X; Sum H; Morrow J; Gratzer W; Mohandas N
    Biochemistry; 2004 Jan; 43(2):310-5. PubMed ID: 14717584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-uniform distribution of myosin-mediated forces governs red blood cell membrane curvature through tension modulation.
    Alimohamadi H; Smith AS; Nowak RB; Fowler VM; Rangamani P
    PLoS Comput Biol; 2020 May; 16(5):e1007890. PubMed ID: 32453720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic simulations of membranes with cytoskeletal interactions.
    Lin LC; Brown FL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):011910. PubMed ID: 16090004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Force balance and membrane shedding at the red-blood-cell surface.
    Sens P; Gov N
    Phys Rev Lett; 2007 Jan; 98(1):018102. PubMed ID: 17358508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular defect in the membrane skeleton of blood bank-stored red cells. Abnormal spectrin-protein 4.1-actin complex formation.
    Wolfe LC; Byrne AM; Lux SE
    J Clin Invest; 1986 Dec; 78(6):1681-6. PubMed ID: 3782475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.