BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 10049347)

  • 1. Two light-activated conductances in the eye of the green alga Volvox carteri.
    Braun FJ; Hegemann P
    Biophys J; 1999 Mar; 76(3):1668-78. PubMed ID: 10049347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nature of rhodopsin-triggered photocurrents in Chlamydomonas. I. Kinetics and influence of divalent ions.
    Holland EM; Braun FJ; Nonnengässer C; Harz H; Hegemann P
    Biophys J; 1996 Feb; 70(2):924-31. PubMed ID: 8789109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nature of rhodopsin-triggered photocurrents in Chlamydomonas. II. Influence of monovalent ions.
    Nonnengässer C; Holland EM; Harz H; Hegemann P
    Biophys J; 1996 Feb; 70(2):932-8. PubMed ID: 8789110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for a light-induced H(+) conductance in the eye of the green alga Chlamydomonas reinhardtii.
    Ehlenbeck S; Gradmann D; Braun FJ; Hegemann P
    Biophys J; 2002 Feb; 82(2):740-51. PubMed ID: 11806916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Volvoxrhodopsin, a light-regulated sensory photoreceptor of the spheroidal green alga Volvox carteri.
    Ebnet E; Fischer M; Deininger W; Hegemann P
    Plant Cell; 1999 Aug; 11(8):1473-84. PubMed ID: 10449581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Platymonas subcordiformis Channelrhodopsin-2 (PsChR2) Function: II. RELATIONSHIP OF THE PHOTOCHEMICAL REACTION CYCLE TO CHANNEL CURRENTS.
    Szundi I; Bogomolni R; Kliger DS
    J Biol Chem; 2015 Jul; 290(27):16585-94. PubMed ID: 25971978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional analysis of Volvox photoreceptors suggests the existence of different cell-type specific light-signaling pathways.
    Kianianmomeni A; Hallmann A
    Curr Genet; 2015 Feb; 61(1):3-18. PubMed ID: 25117716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vision in microalgae.
    Hegemann P
    Planta; 1997; 203(3):265-74. PubMed ID: 9431675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a highly efficient blue-shifted channelrhodopsin from the marine alga Platymonas subcordiformis.
    Govorunova EG; Sineshchekov OA; Li H; Janz R; Spudich JL
    J Biol Chem; 2013 Oct; 288(41):29911-22. PubMed ID: 23995841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoreactions of the Histidine Kinase Rhodopsin Ot-HKR from the Marine Picoalga Ostreococcus tauri.
    Luck M; Velázquez Escobar F; Glass K; Sabotke MI; Hagedorn R; Corellou F; Siebert F; Hildebrandt P; Hegemann P
    Biochemistry; 2019 Apr; 58(14):1878-1891. PubMed ID: 30768260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of the efficiency of G protein activation by ligand-free and light-activated forms of rhodopsin.
    Melia TJ; Cowan CW; Angleson JK; Wensel TG
    Biophys J; 1997 Dec; 73(6):3182-91. PubMed ID: 9414230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling light-induced currents in the eye of Chlamydomonas reinhardtii.
    Gradmann D; Ehlenbeck S; Hegemann P
    J Membr Biol; 2002 Sep; 189(2):93-104. PubMed ID: 12235485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three abundant germ line-specific transcripts in Volvox carteri encode photosynthetic proteins.
    Choi G; Przybylska M; Straus D
    Curr Genet; 1996 Sep; 30(4):347-55. PubMed ID: 8781179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of phobic behavioral responses by rhodopsin-induced photocurrents in Chlamydomonas.
    Holland EM; Harz H; Uhl R; Hegemann P
    Biophys J; 1997 Sep; 73(3):1395-401. PubMed ID: 9284306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhodopsin receptors of phototaxis in green flagellate algae.
    Sineshchekov OA; Govorunova EG
    Biochemistry (Mosc); 2001 Nov; 66(11):1300-10. PubMed ID: 11743874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhodopsin-mediated blue-light damage to the rat retina: effect of photoreversal of bleaching.
    Grimm C; Wenzel A; Williams T; Rol P; Hafezi F; Remé C
    Invest Ophthalmol Vis Sci; 2001 Feb; 42(2):497-505. PubMed ID: 11157889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic nucleotide-gated ion channels in rod photoreceptors are protected from retinoid inhibition.
    He Q; Alexeev D; Estevez ME; McCabe SL; Calvert PD; Ong DE; Cornwall MC; Zimmerman AL; Makino CL
    J Gen Physiol; 2006 Oct; 128(4):473-85. PubMed ID: 17001087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-type specific photoreceptors and light signaling pathways in the multicellular green alga Volvox carteri and their potential role in cellular differentiation.
    Kianianmomeni A
    Plant Signal Behav; 2015; 10(4):e1010935. PubMed ID: 25874475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-induced currents in Xenopus oocytes expressing bovine rhodopsin.
    Knox BE; Khorana HG; Nasi E
    J Physiol; 1993 Jul; 466():157-72. PubMed ID: 7692039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abnormal activation and inactivation mechanisms of rod transduction in patients with autosomal dominant retinitis pigmentosa and the pro-23-his mutation.
    Birch DG; Hood DC; Nusinowitz S; Pepperberg DR
    Invest Ophthalmol Vis Sci; 1995 Jul; 36(8):1603-14. PubMed ID: 7601641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.