BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 10049349)

  • 1. Diffusion barriers limit the effect of mobile calcium buffers on exocytosis of large dense cored vesicles.
    Kits KS; de Vlieger TA; Kooi BW; Mansvelder HD
    Biophys J; 1999 Mar; 76(3):1693-705. PubMed ID: 10049349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relation of exocytosis and rapid endocytosis to calcium entry evoked by short repetitive depolarizing pulses in rat melanotropic cells.
    Mansvelder HD; Kits KS
    J Neurosci; 1998 Jan; 18(1):81-92. PubMed ID: 9412488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of L-type Ca2+ current by fast and slow Ca2+ buffering in guinea pig ventricular cardiomyocytes.
    You Y; Pelzer DJ; Pelzer S
    Biophys J; 1997 Jan; 72(1):175-87. PubMed ID: 8994602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EF-hand protein Ca2+ buffers regulate Ca2+ influx and exocytosis in sensory hair cells.
    Pangršič T; Gabrielaitis M; Michanski S; Schwaller B; Wolf F; Strenzke N; Moser T
    Proc Natl Acad Sci U S A; 2015 Mar; 112(9):E1028-37. PubMed ID: 25691754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endogenous calcium buffers regulate fast exocytosis in the synaptic terminal of retinal bipolar cells.
    Burrone J; Neves G; Gomis A; Cooke A; Lagnado L
    Neuron; 2002 Jan; 33(1):101-12. PubMed ID: 11779483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homosynaptic facilitation of transmitter release in crayfish is not affected by mobile calcium chelators: implications for the residual ionized calcium hypothesis from electrophysiological and computational analyses.
    Winslow JL; Duffy SN; Charlton MP
    J Neurophysiol; 1994 Oct; 72(4):1769-93. PubMed ID: 7823101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse.
    Adler EM; Augustine GJ; Duffy SN; Charlton MP
    J Neurosci; 1991 Jun; 11(6):1496-507. PubMed ID: 1675264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variations in Ca
    Nakamura Y; Reva M; DiGregorio DA
    J Neurosci; 2018 Apr; 38(16):3971-3987. PubMed ID: 29563180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local positive feedback by calcium in the propagation of intracellular calcium waves.
    Wang SS; Thompson SH
    Biophys J; 1995 Nov; 69(5):1683-97. PubMed ID: 8580312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that exocytosis is driven by calcium entry through multiple calcium channels in goldfish retinal bipolar cells.
    Coggins M; Zenisek D
    J Neurophysiol; 2009 May; 101(5):2601-19. PubMed ID: 19244355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sharp Ca²⁺ nanodomains beneath the ribbon promote highly synchronous multivesicular release at hair cell synapses.
    Graydon CW; Cho S; Li GL; Kachar B; von Gersdorff H
    J Neurosci; 2011 Nov; 31(46):16637-50. PubMed ID: 22090491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of temperature and ionic strength on the apparent Ca-affinity of EGTA and the analogous Ca-chelators BAPTA and dibromo-BAPTA.
    Harrison SM; Bers DM
    Biochim Biophys Acta; 1987 Aug; 925(2):133-43. PubMed ID: 3113491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of neuroprotective cell-permeant Ca2+ chelators: effects on [Ca2+]i and glutamate neurotoxicity in vitro.
    Tymianski M; Charlton MP; Carlen PL; Tator CH
    J Neurophysiol; 1994 Oct; 72(4):1973-92. PubMed ID: 7823112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of EGTA on calcium signaling in airway epithelial cells.
    Harris RA; Hanrahan JW
    Am J Physiol; 1994 Nov; 267(5 Pt 1):C1426-34. PubMed ID: 7977703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) and the tyrphostin ST271 inhibit phospholipase C in human platelets by preventing Ca2+ entry.
    Watson SP; Poole A; Asselin J
    Mol Pharmacol; 1995 Apr; 47(4):823-30. PubMed ID: 7723744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gap junction gating sensitivity to physiological internal calcium regardless of pH in Novikoff hepatoma cells.
    Lazrak A; Peracchia C
    Biophys J; 1993 Nov; 65(5):2002-12. PubMed ID: 8298030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+ dependency of 'Ca2+-independent' exocytosis in SPOC1 airway goblet cells.
    Rossi AH; Sears PR; Davis CW
    J Physiol; 2004 Sep; 559(Pt 2):555-65. PubMed ID: 15218074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium-dependent events at fertilization of the frog egg: injection of a calcium buffer blocks ion channel opening, exocytosis, and formation of pronuclei.
    Kline D
    Dev Biol; 1988 Apr; 126(2):346-61. PubMed ID: 2450795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid exocytosis in single chromaffin cells recorded from mouse adrenal slices.
    Moser T; Neher E
    J Neurosci; 1997 Apr; 17(7):2314-23. PubMed ID: 9065492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic organization of Ca2+ signals that regulate synaptic release efficacy in sympathetic neurons.
    Mori M; Tanifuji S; Mochida S
    Mol Pharmacol; 2014 Sep; 86(3):297-305. PubMed ID: 24981043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.