These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 10049380)
1. Nitrate-dependent regulation of acetate biosynthesis and nitrate respiration by Clostridium thermoaceticum. Arendsen AF; Soliman MQ; Ragsdale SW J Bacteriol; 1999 Mar; 181(5):1489-95. PubMed ID: 10049380 [TBL] [Abstract][Full Text] [Related]
2. Insights into CO2 Fixation Pathway of Clostridium autoethanogenum by Targeted Mutagenesis. Liew F; Henstra AM; Winzer K; Köpke M; Simpson SD; Minton NP mBio; 2016 May; 7(3):. PubMed ID: 27222467 [TBL] [Abstract][Full Text] [Related]
3. Heterologous Expression of the Clostridium carboxidivorans CO Dehydrogenase Alone or Together with the Acetyl Coenzyme A Synthase Enables both Reduction of CO Carlson ED; Papoutsakis ET Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28625981 [TBL] [Abstract][Full Text] [Related]
4. Functional Expression of the Clostridium ljungdahlii Acetyl-Coenzyme A Synthase in Clostridium acetobutylicum as Demonstrated by a Novel Fast AG; Papoutsakis ET Appl Environ Microbiol; 2018 Apr; 84(7):. PubMed ID: 29374033 [TBL] [Abstract][Full Text] [Related]
5. Diverse Energy-Conserving Pathways in Clostridium difficile: Growth in the Absence of Amino Acid Stickland Acceptors and the Role of the Wood-Ljungdahl Pathway. Gencic S; Grahame DA J Bacteriol; 2020 Sep; 202(20):. PubMed ID: 32967909 [No Abstract] [Full Text] [Related]
6. Cloning and expression of the gene cluster encoding key proteins involved in acetyl-CoA synthesis in Clostridium thermoaceticum: CO dehydrogenase, the corrinoid/Fe-S protein, and methyltransferase. Roberts DL; James-Hagstrom JE; Garvin DK; Gorst CM; Runquist JA; Baur JR; Haase FC; Ragsdale SW Proc Natl Acad Sci U S A; 1989 Jan; 86(1):32-6. PubMed ID: 2911576 [TBL] [Abstract][Full Text] [Related]
7. Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum. Seifritz C; Daniel SL; Gössner A; Drake HL J Bacteriol; 1993 Dec; 175(24):8008-13. PubMed ID: 8253688 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. Daniel SL; Hsu T; Dean SI; Drake HL J Bacteriol; 1990 Aug; 172(8):4464-71. PubMed ID: 2376565 [TBL] [Abstract][Full Text] [Related]
9. Agr Quorum Sensing influences the Wood-Ljungdahl pathway in Clostridium autoethanogenum. Piatek P; Humphreys C; Raut MP; Wright PC; Simpson S; Köpke M; Minton NP; Winzer K Sci Rep; 2022 Jan; 12(1):411. PubMed ID: 35013405 [TBL] [Abstract][Full Text] [Related]
11. Levels of enzymes involved in the synthesis of acetate from CO2 in Clostridium thermoautotrophicum. Clark JE; Ragsdale SW; Ljungdahl LG; Wiegel J J Bacteriol; 1982 Jul; 151(1):507-9. PubMed ID: 6806250 [TBL] [Abstract][Full Text] [Related]
12. Evidence that carbon monoxide is an obligatory intermediate in anaerobic acetyl-CoA synthesis. Menon S; Ragsdale SW Biochemistry; 1996 Sep; 35(37):12119-25. PubMed ID: 8810918 [TBL] [Abstract][Full Text] [Related]
13. Controlled potential enzymology of methyl transfer reactions involved in acetyl-CoA synthesis by CO dehydrogenase and the corrinoid/iron-sulfur protein from Clostridium thermoaceticum. Lu WP; Harder SR; Ragsdale SW J Biol Chem; 1990 Feb; 265(6):3124-33. PubMed ID: 2303444 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of carbon monoxide oxidation by the carbon monoxide dehydrogenase/acetyl-CoA synthase from Clostridium thermoaceticum: kinetic characterization of the intermediates. Seravalli J; Kumar M; Lu WP; Ragsdale SW Biochemistry; 1997 Sep; 36(37):11241-51. PubMed ID: 9287167 [TBL] [Abstract][Full Text] [Related]
15. Binding of carbon disulfide to the site of acetyl-CoA synthesis by the nickel-iron-sulfur protein, carbon monoxide dehydrogenase, from Clostridium thermoaceticum. Kumar M; Lu WP; Ragsdale SW Biochemistry; 1994 Aug; 33(32):9769-77. PubMed ID: 8068656 [TBL] [Abstract][Full Text] [Related]
16. Role of the [4Fe-4S] cluster in reductive activation of the cobalt center of the corrinoid iron-sulfur protein from Clostridium thermoaceticum during acetate biosynthesis. Menon S; Ragsdale SW Biochemistry; 1998 Apr; 37(16):5689-98. PubMed ID: 9548955 [TBL] [Abstract][Full Text] [Related]
17. Properties of enzymes from Clostridium thermoaceticum and Clostridium formicoaceticum. Ljungdahl LG; Sherod DW; Moore MR; Andreesen JR Experientia Suppl; 1976; 26():237-48. PubMed ID: 7468 [TBL] [Abstract][Full Text] [Related]
18. Acetyl-coenzyme A synthesis from methyltetrahydrofolate, CO, and coenzyme A by enzymes purified from Clostridium thermoaceticum: attainment of in vivo rates and identification of rate-limiting steps. Roberts JR; Lu WP; Ragsdale SW J Bacteriol; 1992 Jul; 174(14):4667-76. PubMed ID: 1624454 [TBL] [Abstract][Full Text] [Related]
19. Enhancing hydrogen-dependent growth of and carbon dioxide fixation by Clostridium ljungdahlii through nitrate supplementation. Emerson DF; Woolston BM; Liu N; Donnelly M; Currie DH; Stephanopoulos G Biotechnol Bioeng; 2019 Feb; 116(2):294-306. PubMed ID: 30267586 [TBL] [Abstract][Full Text] [Related]
20. Expression of an aromatic-dependent decarboxylase which provides growth-essential CO2 equivalents for the acetogenic (Wood) pathway of Clostridium thermoaceticum. Hsu TD; Lux MF; Drake HL J Bacteriol; 1990 Oct; 172(10):5901-7. PubMed ID: 2120194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]