BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 10049392)

  • 21. Characterization of plasmid pSY3 in Sphingobium chungbukense DJ77.
    Yeon SM; Kim YC
    J Microbiol; 2009 Dec; 47(6):796-800. PubMed ID: 20127476
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs).
    Pinyakong O; Habe H; Omori T
    J Gen Appl Microbiol; 2003 Feb; 49(1):1-19. PubMed ID: 12682862
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Complete nucleotide sequence and analysis of pPSR1 (72,601 bp), a pPT23A-family plasmid from Pseudomonas syringae pv. syringae A2.
    Sundin GW; Mayfield CT; Zhao Y; Gunasekera TS; Foster GL; Ullrich MS
    Mol Genet Genomics; 2004 Jan; 270(6):462-76. PubMed ID: 14634868
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome Analysis of Naphthalene-Degrading
    Kim J; Park W
    J Microbiol Biotechnol; 2018 Feb; 28(2):330-337. PubMed ID: 29169219
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ecology, physiology, and phylogeny of deep subsurface Sphingomonas sp.
    Fredrickson JK; Balkwill DL; Romine MF; Shi T
    J Ind Microbiol Biotechnol; 1999 Oct; 23(4-5):273-283. PubMed ID: 11423944
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrolase CehA and Monooxygenase CfdC Are Responsible for Carbofuran Degradation in Sphingomonas sp. Strain CDS-1.
    Yan X; Jin W; Wu G; Jiang W; Yang Z; Ji J; Qiu J; He J; Jiang J; Hong Q
    Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29884759
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Complete nucleotide sequence and genetic organization of the 210-kilobase linear plasmid of Rhodococcus erythropolis BD2.
    Stecker C; Johann A; Herzberg C; Averhoff B; Gottschalk G
    J Bacteriol; 2003 Sep; 185(17):5269-74. PubMed ID: 12923100
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DNA sequence determination of the TOL plasmid (pWWO) xylGFJ genes of Pseudomonas putida: implications for the evolution of aromatic catabolism.
    Horn JM; Harayama S; Timmis KN
    Mol Microbiol; 1991 Oct; 5(10):2459-74. PubMed ID: 1791759
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Replication mechanism and sequence analysis of the replicon of pAW63, a conjugative plasmid from Bacillus thuringiensis.
    Wilcks A; Smidt L; Okstad OA; Kolsto AB; Mahillon J; Andrup L
    J Bacteriol; 1999 May; 181(10):3193-200. PubMed ID: 10322022
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluorene degradation by Sphingomonas sp. LB126 proceeds through protocatechuic acid: a genetic analysis.
    Wattiau P; Bastiaens L; van Herwijnen R; Daal L; Parsons JR; Renard ME; Springael D; Cornelis GR
    Res Microbiol; 2001 Dec; 152(10):861-72. PubMed ID: 11766961
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sequence of the 165-kilobase catabolic plasmid pAO1 from Arthrobacter nicotinovorans and identification of a pAO1-dependent nicotine uptake system.
    Igloi GL; Brandsch R
    J Bacteriol; 2003 Mar; 185(6):1976-86. PubMed ID: 12618462
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An unexpected gene cluster for downstream degradation of alkylphenols in Sphingomonas sp. strain TTNP3.
    Kolvenbach BA; Dobrowinski H; Fousek J; Vlcek C; Schäffer A; Gabriel FL; Kohler HP; Corvini PF
    Appl Microbiol Biotechnol; 2012 Feb; 93(3):1315-24. PubMed ID: 21755281
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNA sequence and units of transcription of the conjugative transfer gene complex (trs) of Staphylococcus aureus plasmid pGO1.
    Morton TM; Eaton DM; Johnston JL; Archer GL
    J Bacteriol; 1993 Jul; 175(14):4436-47. PubMed ID: 7687249
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Region of the streptococcal plasmid pMV158 required for conjugative mobilization.
    Priebe SD; Lacks SA
    J Bacteriol; 1989 Sep; 171(9):4778-84. PubMed ID: 2768188
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sequence and analysis of the 60 kb conjugative, bacteriocin-producing plasmid pMRC01 from Lactococcus lactis DPC3147.
    Dougherty BA; Hill C; Weidman JF; Richardson DR; Venter JC; Ross RP
    Mol Microbiol; 1998 Aug; 29(4):1029-38. PubMed ID: 9767571
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Widespread occurrence of the tfd-II genes in soil bacteria revealed by nucleotide sequence analysis of 2,4-dichlorophenoxyacetic acid degradative plasmids pDB1 and p712.
    Kim DU; Kim MS; Lim JS; Ka JO
    Plasmid; 2013 May; 69(3):243-8. PubMed ID: 23376020
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Characterization of the transfer-related tra region of the conjugative plasmid p19 from a Bacillus subtilis soil strain].
    Poluéktova EU; Gagarina EIu; Nezametdinova VZ; Shilovskiĭ IP; Rodionova SA; Prozorov AA
    Genetika; 2010 Jan; 46(1):33-43. PubMed ID: 20198877
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Complete nucleotide sequence of plasmid pND6-2 from Pseudomonas putida ND6 and characterization of conjugative genes.
    Li S; Zhao H; Li Y; Niu S; Cai B
    Gene; 2013 Jan; 512(1):148-56. PubMed ID: 23046581
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genetic analysis of dioxin dioxygenase of Sphingomonas sp. Strain RW1: catabolic genes dispersed on the genome.
    Armengaud J; Happe B; Timmis KN
    J Bacteriol; 1998 Aug; 180(15):3954-66. PubMed ID: 9683494
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic organization of the catabolic plasmid pJP4 from Ralstonia eutropha JMP134 (pJP4) reveals mechanisms of adaptation to chloroaromatic pollutants and evolution of specialized chloroaromatic degradation pathways.
    Trefault N; De la Iglesia R; Molina AM; Manzano M; Ledger T; Pérez-Pantoja D; Sánchez MA; Stuardo M; González B
    Environ Microbiol; 2004 Jul; 6(7):655-68. PubMed ID: 15186344
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.