BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 10049394)

  • 1. The PalkBFGHJKL promoter is under carbon catabolite repression control in Pseudomonas oleovorans but not in Escherichia coli alk+ recombinants.
    Staijen IE; Marcionelli R; Witholt B
    J Bacteriol; 1999 Mar; 181(5):1610-6. PubMed ID: 10049394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The AlkB monooxygenase of Pseudomonas oleovorans--synthesis, stability and level in recombinant Escherichia coli and the native host.
    Staijen IE; Hatzimanikatis V; Witholt B
    Eur J Biochem; 1997 Mar; 244(2):462-70. PubMed ID: 9119013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The alkane oxidation system of Pseudomonas oleovorans: induction of the alk genes in Escherichia coli W3110 (pGEc47) affects membrane biogenesis and results in overexpression of alkane hydroxylase in a distinct cytoplasmic membrane subfraction.
    Nieboer M; Kingma J; Witholt B
    Mol Microbiol; 1993 Jun; 8(6):1039-51. PubMed ID: 8361351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of alkane hydroxylase of Pseudomonas oleovorans increases the iron requirement of alk+ bacterial strains.
    Staijen IE; Witholt B
    Biotechnol Bioeng; 1998 Jan; 57(2):228-37. PubMed ID: 10099198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determinants for overproduction of the Pseudomonas oleovorans cytoplasmic membrane protein alkane hydroxylase in alk+ Escherichia coli W3110.
    Nieboer M; Gunnewijk M; van Beilen JB; Witholt B
    J Bacteriol; 1997 Feb; 179(3):762-8. PubMed ID: 9006031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled and functional expression of the Pseudomonas oleovorans alkane utilizing system in Pseudomonas putida and Escherichia coli.
    Eggink G; Lageveen RG; Altenburg B; Witholt B
    J Biol Chem; 1987 Dec; 262(36):17712-8. PubMed ID: 2826430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overproduction of a foreign membrane protein in Escherichia coli stimulates and depends on phospholipid synthesis.
    Nieboer M; Vis AJ; Witholt B
    Eur J Biochem; 1996 Oct; 241(2):691-6. PubMed ID: 8917473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression, stability and performance of the three-component alkane mono-oxygenase of Pseudomonas oleovorans in Escherichia coli.
    Staijen IE; Van Beilen JB; Witholt B
    Eur J Biochem; 2000 Apr; 267(7):1957-65. PubMed ID: 10727934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon-source-dependent expression of the PalkB promoter from the Pseudomonas oleovorans alkane degradation pathway.
    Yuste L; Canosa I; Rojo F
    J Bacteriol; 1998 Oct; 180(19):5218-26. PubMed ID: 9748457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New alkane-responsive expression vectors for Escherichia coli and pseudomonas.
    Smits TH; Seeger MA; Witholt B; van Beilen JB
    Plasmid; 2001 Jul; 46(1):16-24. PubMed ID: 11535032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes.
    van Beilen JB; Panke S; Lucchini S; Franchini AG; Röthlisberger M; Witholt B
    Microbiology (Reading); 2001 Jun; 147(Pt 6):1621-1630. PubMed ID: 11390693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth on octane alters the membrane lipid fatty acids of Pseudomonas oleovorans due to the induction of alkB and synthesis of octanol.
    Chen Q; Janssen DB; Witholt B
    J Bacteriol; 1995 Dec; 177(23):6894-901. PubMed ID: 7592483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the alternative sigma factor sigmaS in expression of the AlkS regulator of the Pseudomonas oleovorans alkane degradation pathway.
    Canosa I; Yuste L; Rojo F
    J Bacteriol; 1999 Mar; 181(6):1748-54. PubMed ID: 10074066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solubilization of the overexpressed integral membrane protein alkane monooxygenase of the recombinant Escherichia coli W3110[pGEc47].
    Peters J; Witholt B
    Biochim Biophys Acta; 1994 Dec; 1196(2):145-53. PubMed ID: 7841178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular screening for alkane hydroxylase genes in Gram-negative and Gram-positive strains.
    Smits TH; Röthlisberger M; Witholt B; van Beilen JB
    Environ Microbiol; 1999 Aug; 1(4):307-17. PubMed ID: 11207749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The alkane hydroxylase gene of Burkholderia cepacia RR10 is under catabolite repression control.
    Marín MM; Smits TH; van Beilen JB; Rojo F
    J Bacteriol; 2001 Jul; 183(14):4202-9. PubMed ID: 11418560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional analysis of alkane hydroxylases from gram-negative and gram-positive bacteria.
    Smits TH; Balada SB; Witholt B; van Beilen JB
    J Bacteriol; 2002 Mar; 184(6):1733-42. PubMed ID: 11872725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological changes and alk gene instability in Pseudomonas oleovorans during induction and expression of alk genes.
    Chen Q; Janssen DB; Witholt B
    J Bacteriol; 1996 Sep; 178(18):5508-12. PubMed ID: 8808943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Pseudomonas oleovorans alkane hydroxylase gene. Sequence and expression.
    Kok M; Oldenhuis R; van der Linden MP; Raatjes P; Kingma J; van Lelyveld PH; Witholt B
    J Biol Chem; 1989 Apr; 264(10):5435-41. PubMed ID: 2647718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A positive feedback mechanism controls expression of AlkS, the transcriptional regulator of the Pseudomonas oleovorans alkane degradation pathway.
    Canosa I; Sánchez-Romero JM; Yuste L; Rojo F
    Mol Microbiol; 2000 Feb; 35(4):791-9. PubMed ID: 10692156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.