BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 10049394)

  • 21. Genetics of alkane oxidation by Pseudomonas oleovorans.
    van Beilen JB; Wubbolts MG; Witholt B
    Biodegradation; 1994 Dec; 5(3-4):161-74. PubMed ID: 7532480
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence for autoregulation of camR, which encodes a repressor for the cytochrome P-450cam hydroxylase operon on the Pseudomonas putida CAM plasmid.
    Aramaki H; Sagara Y; Hosoi M; Horiuchi T
    J Bacteriol; 1993 Dec; 175(24):7828-33. PubMed ID: 8253671
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physical structure and expression of alkBA encoding alkane hydroxylase and rubredoxin reductase from Pseudomonas maltophilia.
    Lee NR; Hwang MO; Jung GH; Kim YS; Min KH
    Biochem Biophys Res Commun; 1996 Jan; 218(1):17-21. PubMed ID: 8573125
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiple alkane hydroxylase systems in a marine alkane degrader, Alcanivorax dieselolei B-5.
    Liu C; Wang W; Wu Y; Zhou Z; Lai Q; Shao Z
    Environ Microbiol; 2011 May; 13(5):1168-78. PubMed ID: 21261799
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Topology of the membrane-bound alkane hydroxylase of Pseudomonas oleovorans.
    van Beilen JB; Penninga D; Witholt B
    J Biol Chem; 1992 May; 267(13):9194-201. PubMed ID: 1315749
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biosynthesis of synthons in two-liquid-phase media.
    Wubbolts MG; Favre-Bulle O; Witholt B
    Biotechnol Bioeng; 1996 Oct; 52(2):301-8. PubMed ID: 18629897
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expression of the Pseudomonas putida OCT plasmid alkane degradation pathway is modulated by two different global control signals: evidence from continuous cultures.
    Dinamarca MA; Aranda-Olmedo I; Puyet A; Rojo F
    J Bacteriol; 2003 Aug; 185(16):4772-8. PubMed ID: 12896996
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases.
    van Beilen JB; Funhoff EG; van Loon A; Just A; Kaysser L; Bouza M; Holtackers R; Röthlisberger M; Li Z; Witholt B
    Appl Environ Microbiol; 2006 Jan; 72(1):59-65. PubMed ID: 16391025
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heterologous expression of the cytochrome P450cam hydroxylase operon and the repressor gene of Pseudomonas putida in Escherichia coli.
    Aramaki H; Fujita M; Sagara Y; Amemura A; Horiuchi T
    FEMS Microbiol Lett; 1994 Oct; 123(1-2):49-54. PubMed ID: 7988898
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531.
    Whyte LG; Smits TH; Labbé D; Witholt B; Greer CW; van Beilen JB
    Appl Environ Microbiol; 2002 Dec; 68(12):5933-42. PubMed ID: 12450813
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Homologous functional expression of cryptic phaG from Pseudomonas oleovorans establishes the transacylase-mediated polyhydroxyalkanoate biosynthetic pathway.
    Hoffmann N; Steinbüchel A; Rehm BH
    Appl Microbiol Biotechnol; 2000 Nov; 54(5):665-70. PubMed ID: 11131392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fractionation of inducible alkane hydroxylase activity in Pseudomonas putida and characterization of hydroxylase-negative plasmid mutations.
    Benson S; Fennewald M; Shapiro J; Huettner C
    J Bacteriol; 1977 Nov; 132(2):614-21. PubMed ID: 410794
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of the catechol 1,2-dioxygenase- and phenol monooxygenase-encoding pheBA operon in Pseudomonas putida PaW85.
    Kasak L; Hôrak R; Nurk A; Talvik K; Kivisaar M
    J Bacteriol; 1993 Dec; 175(24):8038-42. PubMed ID: 8253692
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crossing bacterial boundaries: The carbon catabolite repression system Crc-Hfq of Pseudomonas putida KT2440 as a tool to control translation in E. coli.
    Lu C; Ramalho TP; Bisschops MMM; Wijffels RH; Martins Dos Santos VAP; Weusthuis RA
    N Biotechnol; 2023 Nov; 77():20-29. PubMed ID: 37348756
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biocatalyst engineering by assembly of fatty acid transport and oxidation activities for In vivo application of cytochrome P-450BM-3 monooxygenase.
    Schneider S; Wubbolts MG; Sanglard D; Witholt B
    Appl Environ Microbiol; 1998 Oct; 64(10):3784-90. PubMed ID: 9758800
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physiological function of the Pseudomonas putida PpG6 (Pseudomonas oleovorans) alkane hydroxylase: monoterminal oxidation of alkanes and fatty acids.
    Nieder M; Shapiro J
    J Bacteriol; 1975 Apr; 122(1):93-8. PubMed ID: 804473
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Local anesthetics block induction of the Pseudomonas alk regulon.
    Benson SA
    J Bacteriol; 1979 Dec; 140(3):1123-5. PubMed ID: 533765
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Studies on spontaneous promoter-up mutations in the transcriptional activator-encoding gene phIR and their effects on the degradation of phenol in Escherichia coli and Pseudomonas putida.
    Burchhardt G; Schmidt I; Cuypers H; Petruschka L; Völker A; Herrmann H
    Mol Gen Genet; 1997 May; 254(5):539-47. PubMed ID: 9197413
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detection of genes for alkane and naphthalene catabolism in Rhodococcus sp. strain 1BN.
    Andreoni V; Bernasconi S; Colombo M; van Beilen JB; Cavalca L
    Environ Microbiol; 2000 Oct; 2(5):572-7. PubMed ID: 11233165
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of two alkane hydroxylase genes from the marine hydrocarbonoclastic bacterium Alcanivorax borkumensis.
    van Beilen JB; Marín MM; Smits TH; Röthlisberger M; Franchini AG; Witholt B; Rojo F
    Environ Microbiol; 2004 Mar; 6(3):264-73. PubMed ID: 14871210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.