These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 10049668)

  • 1. Microvascular hematocrit and permeability-surface area product of in situ canine skeletal muscle during fatigue.
    Frisbee JC; Barclay JK
    Microvasc Res; 1999 Mar; 57(2):203-7. PubMed ID: 10049668
    [No Abstract]   [Full Text] [Related]  

  • 2. Microvascular hematocrit and permeability-surface area product in contracting canine skeletal muscle in situ.
    Frisbee JC; Barclay JK
    Microvasc Res; 1998 Mar; 55(2):153-64. PubMed ID: 9521890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Striated muscle microvascular hematocrit: the increase from rest to contraction.
    Frisbee JC
    Microvasc Res; 1998 Mar; 55(2):184-6. PubMed ID: 9521894
    [No Abstract]   [Full Text] [Related]  

  • 4. [Effect of nitric oxide on the efficiency of oxygen consumption by the working skeletal muscle in fatigue].
    Bohuslavs'kyĭ AIu; Dmytriieva AV; Sahach VF
    Fiziol Zh (1994); 2005; 51(1):33-42. PubMed ID: 15801198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations in skeletal muscle microvascular hematocrit with short-term reduced renal mass hypertension.
    Frisbee JC; Lombard JH
    Microvasc Res; 2000 May; 59(3):390-3. PubMed ID: 10792971
    [No Abstract]   [Full Text] [Related]  

  • 6. [The role of the mitochondrial permeability transition pore in the development of skeletal muscle fatigue in dogs].
    Bohuslavs'kyĭ AIu; Dmytriieva AV; Sahach VF
    Fiziol Zh (1994); 2004; 50(5):3-10. PubMed ID: 15693291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local nitric oxide synthase inhibition reduces skeletal muscle glucose uptake but not capillary blood flow during in situ muscle contraction in rats.
    Ross RM; Wadley GD; Clark MG; Rattigan S; McConell GK
    Diabetes; 2007 Dec; 56(12):2885-92. PubMed ID: 17881613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perfusion and diffusion in shock. A study of disturbed tissue-blood exchange in low flow states in canine skeletal muscle by a local clearance technique.
    Appelgren L
    Acta Physiol Scand Suppl; 1972; 378():1-72. PubMed ID: 4507647
    [No Abstract]   [Full Text] [Related]  

  • 9. Polycythemia decreases fatigue in tetanic contractions of canine skeletal muscle.
    Frisbee JC; Murrant CL; Wilson BA; Barclay JK
    Med Sci Sports Exerc; 1999 Sep; 31(9):1293-8. PubMed ID: 10487371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo analysis of microcirculation following closed soft-tissue injury.
    Schaser KD; Vollmar B; Menger MD; Schewior L; Kroppenstedt SN; Raschke M; Lübbe AS; Haas NP; Mittlmeier T
    J Orthop Res; 1999 Sep; 17(5):678-85. PubMed ID: 10569476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Caffeine administration results in greater tension development in previously fatigued canine muscle in situ.
    Howlett RA; Kelley KM; Grassi B; Gladden LB; Hogan MC
    Exp Physiol; 2005 Nov; 90(6):873-9. PubMed ID: 16118234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contraction stimulates nitric oxide independent microvascular recruitment and increases muscle insulin uptake.
    Inyard AC; Clerk LH; Vincent MA; Barrett EJ
    Diabetes; 2007 Sep; 56(9):2194-200. PubMed ID: 17563063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of stimulation frequency on blood flow in rat fast skeletal muscles.
    Hawker MJ; Egginton S
    Exp Physiol; 1999 Sep; 84(5):941-6. PubMed ID: 10502661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of antioxidants on microvascular oxygenation and blood flow in skeletal muscle of young rats.
    Copp SW; Ferreira LF; Herspring KF; Hirai DM; Snyder BS; Poole DC; Musch TI
    Exp Physiol; 2009 Sep; 94(9):961-71. PubMed ID: 19502293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeletal muscle fatigue.
    Kent-Braun JA; Fitts RH; Christie A
    Compr Physiol; 2012 Apr; 2(2):997-1044. PubMed ID: 23798294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle microvascular hemoglobin concentration and oxygenation within the contraction-relaxation cycle.
    Lutjemeier BJ; Ferreira LF; Poole DC; Townsend D; Barstow TJ
    Respir Physiol Neurobiol; 2008 Feb; 160(2):131-8. PubMed ID: 17964228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical manifestations of muscle fatigue during concentric and eccentric isokinetic knee flexion-extension movements.
    Molinari F; Knaflitz M; Bonato P; Actis MV
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1309-16. PubMed ID: 16830935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased blood pressure can reduce fatigue of thenar muscles paralyzed after spinal cord injury.
    Butler JE; Ribot-Ciscar E; Zijdewind I; Thomas CK
    Muscle Nerve; 2004 Apr; 29(4):575-84. PubMed ID: 15052623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of aging on capillary hemodynamics in contracting rat spinotrapezius muscle.
    Copp SW; Ferreira LF; Herspring KF; Musch TI; Poole DC
    Microvasc Res; 2009 Mar; 77(2):113-9. PubMed ID: 19094997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Physiology of cerebral microcirculation].
    Tomita M
    Nihon Rinsho; 1985 Feb; 43(2):233-8. PubMed ID: 3889404
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.