These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 100497)
1. Utilization of exogenous purine compounds in Bacillus cereus. Translocation of the ribose moiety of inosine. Mura U; Sgarrella F; Ipata PL J Biol Chem; 1978 Nov; 253(21):7905-9. PubMed ID: 100497 [TBL] [Abstract][Full Text] [Related]
2. Induction and repression of enzymes involved in exogenous purine compound utilization of Bacillus cereus. Tozzi MG; Sgarrella F; Ipata PL Biochim Biophys Acta; 1981 Dec; 678(3):460-6. PubMed ID: 6274419 [TBL] [Abstract][Full Text] [Related]
3. Phosphorylase-mediated mobilization of the amino group of adenine in Bacillus cereus. Mura U; Di Martino D; Leporini C; Gini S; Camici M; Ipata PL Arch Biochem Biophys; 1987 Dec; 259(2):466-72. PubMed ID: 3122663 [TBL] [Abstract][Full Text] [Related]
4. The existance of a group translocation transport mechanism in animal cells: uptake of the ribose moiety of inosine. Quinlan DC; Li CC; Hochstadt J J Supramol Struct; 1976; 4(4):387-99. PubMed ID: 180353 [TBL] [Abstract][Full Text] [Related]
5. Purine nucleoside phosphorylase. Inosine hydrolysis, tight binding of the hypoxanthine intermediate, and third-the-sites reactivity. Kline PC; Schramm VL Biochemistry; 1992 Jul; 31(26):5964-73. PubMed ID: 1627539 [TBL] [Abstract][Full Text] [Related]
6. Inosine 5'-monophosphate vs inosine and hypoxanthine as substrates for purine salvage in human lymphoid cells. Thompson LF Proc Soc Exp Biol Med; 1985 Sep; 179(4):432-6. PubMed ID: 2991937 [TBL] [Abstract][Full Text] [Related]
7. Metabolism of exogenous purine bases and nucleosides by Salmonella typhimurium. Hoffmeyer J; Neuhard J J Bacteriol; 1971 Apr; 106(1):14-24. PubMed ID: 4928005 [TBL] [Abstract][Full Text] [Related]
8. Group translocation of the ribose moiety of inosine by vesicles of plasma membrane from T(3 cells transformed by Simian virus 40. Quinlan DC; Hochstadt J J Biol Chem; 1976 Jan; 251(2):344-54. PubMed ID: 173717 [TBL] [Abstract][Full Text] [Related]
9. Purine base and nucleoside uptake in Plasmodium berghei and host erythrocytes. Hansen BD; Sleeman HK; Pappas PW J Parasitol; 1980 Apr; 66(2):205-12. PubMed ID: 6993639 [TBL] [Abstract][Full Text] [Related]
10. Regulation of purine utilization in bacteria. VII. Involvement of membrane-associated nucleoside phosphorylase in the uptake and the base-mediated loss of the ribose moiety of nucleosides by Salmonella typhimurium membrane vesicles. Rader RL; Hochstadt J J Bacteriol; 1976 Oct; 128(1):290-301. PubMed ID: 789336 [TBL] [Abstract][Full Text] [Related]
11. Adenosine accumulation in Saccharomyces cerevisiae cultured in medium containing low levels of adenine. Laten HM; Valentine PJ; van Kast CA J Bacteriol; 1986 Jun; 166(3):763-8. PubMed ID: 3086289 [TBL] [Abstract][Full Text] [Related]
12. Spectrophotometric and radioenzymatic determination of ribose-5-phosphate. Tozzi MG; Sgarrella F; Del Corso A; Ipata PL J Biochem Biophys Methods; 1984 Dec; 10(3-4):163-71. PubMed ID: 6530507 [TBL] [Abstract][Full Text] [Related]
13. Structural basis of the substrate specificity of Bacillus cereus adenosine phosphorylase. Dessanti P; Zhang Y; Allegrini S; Tozzi MG; Sgarrella F; Ealick SE Acta Crystallogr D Biol Crystallogr; 2012 Mar; 68(Pt 3):239-48. PubMed ID: 22349225 [TBL] [Abstract][Full Text] [Related]
14. Purine accumulation in human fat cell suspensions. Evidence that human adipocytes release inosine and hypoxanthine rather than adenosine. Kather H J Biol Chem; 1988 Jun; 263(18):8803-9. PubMed ID: 3379046 [TBL] [Abstract][Full Text] [Related]
15. Induction of deoxyribose-5-phosphate aldolase of Bacillus cereus by deoxyribonucleosides. Tozzi MG; Sgarrella F; Barsacchi D; Ipata PL Biochem Int; 1984 Sep; 9(3):319-25. PubMed ID: 6439205 [TBL] [Abstract][Full Text] [Related]
16. Differences between rat liver epithelial and fibroblast cells in metabolism of purines. Berman JJ; Tong C; Williams GM J Cell Physiol; 1980 Jun; 103(3):393-8. PubMed ID: 6249828 [TBL] [Abstract][Full Text] [Related]
17. The purine nucleoside cycle in cell-free extracts of rat brain: evidence for the occurrence of an inosine and a guanosine cycle with distinct metabolic roles. Barsotti C; Pesi R; Felice F; Ipata PL Cell Mol Life Sci; 2003 Apr; 60(4):786-93. PubMed ID: 12785725 [TBL] [Abstract][Full Text] [Related]
18. Purine uptake and release in rat C6 glioma cells: nucleoside transport and purine metabolism under ATP-depleting conditions. Sinclair CJ; LaRivière CG; Young JD; Cass CE; Baldwin SA; Parkinson FE J Neurochem; 2000 Oct; 75(4):1528-38. PubMed ID: 10987833 [TBL] [Abstract][Full Text] [Related]
19. Catabolism of adenosine 5'-monophosphate in promastigotes of Leishmania tropica. Königk E; Rasoul SA Tropenmed Parasitol; 1978 Sep; 29(3):319-22. PubMed ID: 103264 [TBL] [Abstract][Full Text] [Related]
20. Distinct mechanisms of hypoxanthine and inosine transport in membrane vesicles isolated from Chinese hamster ovary and Balb 3T3 cells. Prasad R; Shopsis C; Hochstadt J Biochim Biophys Acta; 1981 May; 643(2):306-18. PubMed ID: 7225383 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]